Modeling of a synthesis gas production reactor using Aspen plus

Document Type : Original Research

Authors

1 Department of Chemical Engineering, Institute of Micro Higher Education, Bushehr, Iran

2 Department of Chemical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran

3 Department of chemical engineering, University of Bojnord, Bojnord, Iran

Abstract
Synthesis gas is a mixture of hydrogen gas and carbon monoxide, which usually contains carbon dioxide as an additive. This gas is the raw material in the production of many basic materials of the petrochemical industry such as methanol. Various raw materials have been used to produce synthetic gas, including natural gas (methane), hydrocarbons, and coal. This gas is also very suitable as an intermediate material for the production of industrial products, and depending on the reaction conditions and catalysts used, different chemicals may be produced in large industrial units. Modeling a synthesis gas production reactor as the heart of an operating unit in the petrochemical industry is of particular importance. Simulation of refinery units is always associated with many problems due to the complexity of the process and the lack of proper kinetics. In recent years, software such as Span Plus has been used to simulate and study refinery processes, which in this regard have to some extent facilitated and achieved the appropriate. In this research, the synthesis gas production unit is simulated with two methods of steam reforming and partial oxidation method using Aspen Plus V8.4 software. By examining parameters such as conversion rate, hydrogen to CO ratio, reactor temperature and pressure during the production process and other variables, the simulation results show that after adjusting the reaction coefficients, parameters such as inlet feed temperature, reactor length and time Residues affect the production of desired products that the use of steam reforming in terms of production of synthetic gas has a higher efficiency than the partial oxidation system.

Keywords

Subjects


[1] Agee K.L., Agee M.A., Weick L.J., Trepper E.L., Synthesis Gas Production System And Method, 2000.
[2] Rostrup-Nielsen J.R., Production Of Synthesis Gas, Catal. Today. 18و 305–324, 1993.
[3] Rostrup-Nielsen J.R., Sehested J., Nørskov J.K., Hydrogen And Synthesis Gas By Steam- And C02 Reforming, Adv. Catal. 47, 65–139, 2002.
[4] Aasberg-Petersen K., Christensen T.S., Nielsen C.S., Dybkjær I., Recent Developments In Autothermal Reforming And Pre-reforming For Synthesis Gas Production In GTL Applications, Fuel Process. Technol. 83 , 253–261, 2003.
[5] فرهی ع., علوی املشی س., مقایسه عملکرد راکتورهای بستر ثابت و بستر سیال در تولید گاز سنتز به روش اکسیداسیون جزئی کاتالیستی متان, یازدهمین کنگره ملی مهندسی شیمی ایران،1385.
[6] Reyes S.C., Sinfelt J.H., Feeley J.S., Evolution Of Processes For Synthesis Gas Production: Recent Developments In An Old Technology, Ind. Eng. Chem. Res. 42, 1588–1597, 2003.
[7] فرخی ف., دادخواه م., امیدخواه م., تولید گاز سنتز از متان در راکتور پلاسمای هاله مثبت, یازدهمین کنگره ملی مهندسی شیمی ایران.،1385.
[8] کیهانی ک., فاطمی ش., میناسیان ر., مدلسازی ریاضی فرآیند تولید گاز سنتز توسط اکسیداسیون جزئی متان در رآکتورهای غشایی بستر سیال, یازدهمین کنگره ملی مهندسی شیمی ایران، 1385.. (1385).
[9] عبدالهی فر م., نکوئی ح., زمانی م., حسن زاده پای برجی م., ارزیابی سینتیکی اکسیداسیون جزئی متان به هیدروژن در یک راکتور پلاگ, اولین کنفرانس بین المللی نفت، گاز، پتروشیمی و نیروگاهی،1391.
[10] انواری آ., خرد رنجبر ر., فرآیند تولید گاز سنتز به روش اکسیداسیون جزیی متان (pox) در مقیاس نیمه صنعتی, دوازدهمین کنگره ملی مهندسی شیمی ایران، 1387.
[11] Page J., Applied Heterogeneous Catalysis: Design, Manufacture, Use Of Solid Catalysts, Paris Ed. Tech. 1987.
[12] Hou K., Hughes R., The Kinetics Of Methane Steam Reforming Over A Ni/α-Al2O Catalyst, Chem. Eng. J. 82, 311–328,2001.