بهینه سازی خواص مکانیکی فوم‌های پلی پروپیلن تولید شده با اکسترودر

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه شهید مدنی آذربایجان

2 دانشگاه بناب

3 داشگاه مراغه

چکیده
فوم­های پلاستیکی خوب طراحی شده از نقطه نظر چگالی سلول­ها و اندازه آنها ، باز یا بسته بودن و یکنواخت بودن سلول­ها، در کنار داشتن امتیاز هایی از قبیل مصرف مواد کمتر، ثبات ابعادی بالاتر، فرایندپذیری بهتر و کیفیت سطح مطلوبتر نسبت به پلاستیک های فوم نشده متناظر خود، می توانند خواص مکانیکی و فیزیکی برتری، مانند استحکام به وزن، استحکام به ضربه، خواص حرارتی و دی الکتریکی داشته باشند. چگونگی توزیع دما در نواحی مختلف اکسترودر، کمیت و کیفیت نانوذرات افزودنی و چگونگی توزیع آنها در زمینه پلیمر می توانند تاثیر چشمگیری در خصوصیات مکانیکی فوم های اکسترودر داشته باشند. در این تحقیق با استفاده از دستگاه اکسترودر، فوم‌های میکروسلولی پلی پروپیلن گرافت شده با مالئیک انیدرید با افزودن 3، 7 و 9% وزنی نانو رس اصلاح سطح شده، در سه شرایط دمایی اکسترودر تولید و اثر مواد و فرایندها در خواص مکانیکی مورد تحقیق قرار گرفت. نتایج نشان می دهد که افزودن نانو رس موجب بهبود خواص مکانیکی فوم پلی پروپیلن گرافت شده با مالئیک انیدرید می شود. به عنوان مثال، نتایج نشان می دهد نمونه های درست شده حاوی 7% رس اصلاح شده سطحی، حدود 10 درصد مقاومت به ضربه یی بیشتری نسبت به نمونه های بدون نانو رس دارا می باشند. همچنین برای همین نمونه ها افزایش حدود 5 درصدی در مدول یانگ نسبت به سایر نمونه ها ثبت شده است. همچنین بررسی های ریزساختاری نمونه‌ها با استفاده از میکروسکوپ الکترونی روبشی، نشان دهنده‌ی این است که افزودن نانو رس موجب یکنواخت شدن ساختار فوم و سلول های ریزتر می شود. در این تحقیق، کمترین اندازه متوسط سلولها (5/87 میکرومتر) و پایین ترین دانسیته فوم (3/0 گرم بر سانتی متر مکعب) برای نمونه حاوی 7% رس که در حالت کاری دو تولید شده بود ثبت گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of mechanical properties of PP-polymer foam fabricated via extruder

نویسندگان English

Hamidreza Azimi 1
dAVOUD jAHANI 2
AMIN Mohebifar 3
Mohamad reza Yazdan panah 2
1 دانشگاه شهید مدنی آذربایجان
2 دانشگاه بناب
3 داشگاه مراغه
چکیده English

Research subject:Well-designed plastic foams, with respect to their cell density and cell size, open-or-close cells, and the cell uniformity, compared to their counterpart unfoamed plastic parts, beside of having the advantages of less material consumption, dimensional stability, better processability, and a higher surface quality, they can have superior mechanical and physical properties, including strength to weight, impact strength, thermal and dielectric properties. The temperature distribution in the different zones of the extruder, the qualities and quantities of the nanoparticle additives and their dispersion in the polymer matrix can have significant effect on the mechanical properties of the produced foams by the extruder.

Research approach: In this study, using an extruder, MA-g-polypropylene microcellular foams, containing 3, 7 and 9 wt% of nano-clay particles, were produced under three temperature arrangements on the extruder and the material and the processing effects on the mechanical properties were investigated.

Main results: The result of this investigation shows that adding of nanoclay improves the mechanical properties of MA-g-PP.s foams. As an example, the results show that the sample with 7 wt% of surface modified nanoclay, owns about 10% higher impact toughness compared to the samples produced without nanoclay. Also for the same samples a rise of about 5% was recorded in Young's modulus. The microstructural studies of the produced foams by scanning electron microscope (SEM) show that adding of nanoclay can result on more foam uniformity and smaller cell size. In this study, the smallest average cell size (87.5 μm) and the lowest density (0.3 g/cm3) were recorded for a sample with 7wt% nanoclay.

کلیدواژه‌ها English

Extruder
MA-g-polypropylene
Mechanical
Properties
Nanoclay
Nanocomposites
[1] Park, C.B., Baldwin, D.F., Suh, N.P., Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polym Eng Sci, (35), 432-440, 1995.
[2] Nofar, M.., Salehiyan, R.., Ciftci, U., Jalali, A., Durmuş, A., Ductility improvements of PLA-based binary and ternary blends with controlled morphology using PBAT, PBSA, and nanoclay. J Composites Part B: Engineering , (182), 107661, 2020.
[3] Wang, P., Aliheidari, N., Zhang, X., Ameli, A.. Strong ultralight foams based on nanocrystalline cellulose for high-performance insulation. J Carbohydrate polymers, (218), 103-111, 2019.
[4] Nofar, M., Salehiyan ,R., Sinha Ray, S., Rheology of poly (lactic acid)-based systems. J Polymer Reviews, 59 (3), 465-509, 2019.
[5] Wang, C., Shaayegan, V., Ataei ,M., Costa, F., Han, S, Bussmann, M., Park, C.B., Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding. J European Polymer Journal, (119), 189-199, 2019.
[6] Tabatabaei, A., Barzegari, M.R., Mark, L.H., Park, C.B., Visualization of polypropylene's strain-induced crystallization under the influence of supercritical CO2 in extrusion. J Polymer, (122), 312-322, 2017.
[7] Jahani, D., Ameli, A., Jung, P., Barzegari, M., Park, C., and Naguib, H..J.M., Design Open-Cell Cavity-Integrated Injection-Molded Acoustic Polypropylene Foams, Materials . Design, (53),20-28, 2014.
[8] Jahani, D., Ameli, A., Saniei, M., Ding, W., Park, C.B., and Naguib, H.E., Engineering Characterization of the Structure Acoustic Property Thermal Conductivity and Mechanical Property of Highly Expanded Open‐Cell Polycarbonate Foams, Macromolecular, Materials, Engineering, (300), 48-56, 2015.
[9] Enayati, M.S., Familiy, M.H.N., Janani, H. Production of Polystyrene Open-Celled Microcellular Foam In Batch Process By Super Critical Co2. Iranian Journal of Polymer Science and Technology,23(107). 223-234 ,2010.
[10] Jahani, D., Azimi, H., and Nazari, A., An Experimental Study on the Micro-and Nanocellular Foaming of Polystyrene/Poly (Methyl Methacrylate) Blend Composites, Polym, Engineering, (39), 926-933, 2019.
[11] Nofar ,M., Batı, B., Kuçuk, E.B., and Jalali, A., Effect of Soft Segment Molecular Weight on the Microcellular Foaming Behavior of TPU Using Supercritical CO2, Supercritical. Fluids, (16),10-48, 2020.
[12] Noormohammad, A.; Molla-Abbasi, P., Porous Poly(vinyl alcohol)/Carbon Nanotube Sensitive Layer for Detection of Lung Cancer Biomarkers. Iranian journal of polymer science & technology ,33(2) Pages 147-158,2020.
[13] Ameli, A., Nofar, M., Jahani, D., Rizvi, G., Park, CB., Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors, J Chemical Engineering Journal; (262), 78-872015.
[14] Ameli, A, Jahani, D, Nofar, M, Jung, PU, Park, CB. Processing and characterization of solid and foamed injection-molded polylactide with talc; 49 (4), 351-374, 2013.
[15] Ding ,W., Jahani, D., Chang, E., Alemdar, A., Park, C.B., and Sain, M., Development of PLA/Cellulosic Fiber Composite Foams Using Injection Molding Crystallization and Foaming Behaviors Composites , Apply. Sci . Manufacturing, (83), 130-139, 2016.
[16] Yiu ,H.H., Botting, C.H., Botting, N.P., and Wright, P.A., Size Selective Protein Adsorption on Thiol-Functionalised SBA-15 Mesoporous Molecular Sieve, Physical, Chem. Chemical, Phys, (15), 2983-2985, 2001.
[17] Hussain, F., Hojjati, M., Okamoto, M., and Gorga, R.E., Polymer-Matrix Nanocomposites Processing Manufacturing and Application an Overview, Composite. Materials, (40), 1511-1575, 2006.
[18] Silvi, N., Buckley, D.J., Simon, D.A., Simone, D.L., and Pavlisko, J.A., Method of Making a Polymer Foam, Google Patents, 2017.
[19] Khalkhali .Zavieh, T., Hossein Khanli, H., Sarabi, F. Die Design For Polyethylene Foam Extrusion With Azodicarbonamide As Foaming Agent. Iranian Journal Of Polymer Science And Technology , 20 (87), P 3-9,2007.
[20] Fan ,D., Li, M., Xing, J., Jiang, H., and Tang, Z., Interfaces Novel Method for Preparing Auxetic Foam from Closed-Cell Polymer Foam Based on the Steam Penetration and Condensation Process , Apply. Materials, Interface, (10), 22669-22677, 2018.
[21] Rueger, Z., and Lakes, S.J., Experimental Cosserat Elasticity in Open-Cell Polymer Foam, J. Philosophical . Magazine, (12), 93-111, 2016.
[22] Shafi, M., and Flumerfelt, R.J., Initial Bubble Growth in Polymer Foam Processes. J, Chem, Engineering, Sci, (52), 627-633, 1997.
[23] Tomasko, D.L., Burley, A., Feng, L., Yeh, S.K., Nirmal-Kumar, K., Kusaka, S., and Koelling, I., Development of CO2 for Polymer Foam Applications, Supercritical. Fluids, (47), 493-499, 2009.
[24] Khosrokhavar ,R., Naderi, G., Bakhshandeh, G.R., and Ghoreishy, M.H., Effect of Processing Parameters on PP/EPDM/Organoclay Nanocomposites Using Taguchi Analysis Method Iranian. Polym, (20), 41-53, 2011.
[25] Shokoohi, S., Naderi, G.J.J., Development and Experimental Validation of Morphology Predictive Model for Compatibilized Ternary Polymer Blends Effect of Interfacial Tension. J,Springer, (68), 37-48, 2016.
[26] Lee, L.J., Zeng, C., Cao, X., Han ,X., Shen, J., and Xu, G.J., Technology Polymer Nanocomposite Foams, J.Composites, Sci, Technology, (65), 2344-2363, 2005.
[27] Ameli ,A., Jahani, D., Nofar, M., Jung, P.U., and Park, C.B., Processing and Characterization of Solid and Foamed Injection-Molded Polylactide with Talc. Cellular Plastics, (49), 351-374, 2013.
[28] Ameli A., Park C.B., and Potschke P., The Effect of Foaming on the Properties of Carbon Nanotubes/Polymer Composites, Processing of Nanocomposite Polymers, Elsevier, 235-254, 2019.
[29] Klempner, D., and Frisch, K.C., Handbook of Polymeric foams and foam Technology, J. Hanser. Munich, 1991.
[30] Karger-Kocsis, J., Polypropylene an AZ Reference, J, Springer, Sci, Business Media, 2012.
[31] Bao, J.B., Liu ,T., Zhao, L., Hu, G.H., Miao, X., and Li, X.J.P., Oriented Foaming of Polystyrene with Supercritical Carbon Dioxide for Toughening. J, Polym, (53), 5982-5993, 2012.
[32] Zakiyan, S.E., Famili, M.H.N., and Ako, S.T., Heterogeneous Nucleation in Batch Foaming of Polystyrene in Presence of Nanosilica as a Nucleating Agent. Iran, J,Polym, Sci,Technol.(Persian), (25), 231-240, 2012.
[33] Famili, M., Janani, H., and Enayati, M., Foaming of a Polymer–Nanoparticle System: Effect of the Particle Properties. Apply, Polym, Sci, (119), 2847-2856, 2011.
[34] Azimi, H.R., Rezaei, M., and Abbasi, F.P., The Effect of Expansion Conditions on the Batch Foaming Dynamics of St–MMA Copolymer. Cellular Plastics , (48), 125-140, 2012.
[35] Nakhaei, M.R., Naderi, G., Ghoreishy, M.H.R., Experimental Investigation of Mechanical Properties, Fracture Mechanism and Crack Propagation of PA6/NBR/Clay Nanocomposites. Iranian journal of polymer science & technology, 33(2), 159-172, 2020.
[36] Goodarzi, V., Fasihi, M., Microstructure mechanical and electrical characterizations of bimodal and nanocellular polypropylene/graphene nanoplatelet composite foams. Mater Today Commun, (25), 101-447, 2020.
[37] Jo, C., Fu, J., Naguib, H. E. Constitutive Modeling for Intercalated PMMA/Clay Nanocomposite Foams. Polymer Engineering and Science, 46(12), 1787-1796, 2006.
[38] Rafiee, R., Shahzadi, R., Predicting mechanical properties of nanoclay/polymer composites using stochastic approach. Composites Part B, (152), 31-42, 2018.
[39] Shettar, M., Kini, A., Sharma, S., Hiremath, P. Study on Mechanical Characteristics of Nanoclay Reinforced Polymer Composites. Advanced Materials, Manufacturing, Management and Thermal Science AMMMT, (4) 11158–11162,2017.
[40] Chan, M., Lau, K.T., Wong, T.T., Ho, M.P., Hui, D., Mechanism of reinforcement in a nanoclay/polymer composite. Composites Part B Engineering, 42(6),1708-1712, 2011.
[41] Keshtkar, M., Nofar, M., Park, C.B. , Carreau, P.J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2, Polymer, (55), 4077-4090, 2014.
[42] Bragg, W.L., The Diffraction of Short Electromagnetic Waves by a Crystal. Proceedings of the Cambridge Philosophical Society. 23 (45),153, 1929.
[43] Lee, Y. H., Park, C. B., Sain, M., Kontopoulou, M., Zheng ,W., Effects of Clay Dispersion and Content on the Rheological /Mechanical Properties, and Flame Retardance of HDPE Clay Nanocomposites. Journal of Applied Polymer Science, (105), 1993–1999, 2007.
[44] Nofar, M., Majithiya, K. Kuboki, T. and Park, C. B. The foamability of low-melt-strength linear polypropylene with nanoclay and coupling agent. Journal of Cellular Plastics, 48(3), 271–287, 2012.
[45] Chen, B., Evans, J.R.G. Impact strength of polymer-clay nanocomposites. Journal of Soft Matter, (5), 3572-3584. 2009.