مطالعات غلظت – رفتاری ،جذب، سیلابزنی، تراوایی نسبی نانو کامپوزیت پلیمری CuO/TiO2/PAM در دو لیتولوژی مخزنی

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشگاه صنعت نفت

چکیده
نانو مواد از جمله موادی هستند که به علت اندازه ای که دارند به راحتی می توانند به حفرات ریز نفوذ کرده و تاثیرخود را بگذارند. شناخت دقیق مکانیزم های رفتاری این نانو سیالات در تغییر ترشوندگی امری ضروری است. چرا که اگر شناخت مناسبی بر این مکانیزم ها وجود نداشته باشد ممکن است با رفتار عکس باعث ضرر و آسیب به مخزن شوند. در این مطالعه در ادامه مطالعه ی پیشین نویسندگان بررسی رفتاری و مکانیزمی به صورت دقیق تر و مستند تر بررسی گردیده و تست های جذب طیفی، سیلابزنی شیمیایی و نمودار های تراوایی نسبی تایید کنندگان نتیجه ی ازدیاد برداشتی این نانوکامپوزیت می باشند. درسنگ های کربناته جذب نانوماده در حالت لایه مضاعف الکتریکی به عنوان مکانیزم غالب و در سنگ های ماسه ای فشار جدایشی مکانیزم غالب تغییر ترشوندگی به دست آمد. به جهت تایید مطالب تست جذب طیفی در حضور متقابل نانوسیال غلظت ppm 200 در دو سیستم کربناته و ماسه سنگی انجام گردید که میزان جاذبه و دافعه ی الکترواستاتیکی در کربناته ها و ماسه سنگ ها اثبات گردد. نتایج تست جذب بیانگر وجود دو فرایند جذب و ته نشینی برای سیستم کربناته و فرایند ته نشینی برای سیستم ماسه سنگی بود. تست دینامیک سیلابزنی شیمیایی به جهت تایید اثر گذاری این ماده در افزایش تولید انجام گردید. سیلابزنی نانوسیالی به عنوان ازدیاد برداشت تولید نفت 56.5 و 59.55 درصدی را به ترتیب برای سیستم نانوسیال 200 ppm-سنگ کربناته و نانوسیال 1500 ppm-سنگ ماسه ای نشان دادند که به ترتیب 8.5 و 6.35 درصد نسبت به تزریق آب شور ازدیاد برداشت نتیجه حاصل گردیده است. نمودار های تراوایی نسبی با افزایش 10 درصدی اشباع آب نقطه تقاطعی در سیستم کربناته و با افزایش 12 درصدی اشباع آب نقطه تقاطعی در سیستم ماسه سنگی و اثر گذاری رفتاری ماده را در غلظت های مورد بررسی نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Concentration-Behavioral, Adsorption, Flooding, Relative Permeability Studies of Polymer Nanocomposite in Two Reservoir Lithologies

نویسندگان English

Hossein Bahraminejad
Abbas Khaksar Manshad
Petroleum University of technology
چکیده English

Research subject: Nanomaterials are substances that, because of their size, can easily penetrate small pores and apply their impact. Nanofluids can allow appropriate wettability change in the reservoir rock, therefore, an accurate understanding of the behavioral mechanisms of these nanofluids is important in changing the wettability. This is because if there is no proper understanding of these mechanisms, they may exhibit the opposite behavior and cause damage to the reservoir. In previous research, CuO / TiO2 / PAM nanocomposite was synthesized and mechanistically introduced.

Research approach: In this study, in continuation of the previous study, the behavioral and mechanism study has been investigated in a more accurate and documented manner, and spectral absorption tests, chemical flooding, and relative permeability diagrams confirm the effectiveness of enhanced oil recovery results of this nanocomposite. In carbonate rocks due to the positive surface charge of the rock and the negative charge of the nanocomposite, adsorption of nanomaterials in a double electrode layer state has been suggested as the dominant mechanism of wettability change. In sandstone rocks due to the charge coincidence of rock surface and nanomaterials which are both negative, the mechanism of disjoining pressure was the dominant mechanism of wettability change. To prove the abovementioned behaviors 200 ppm concentration of nanofluid was analyzed by spectroscopy method of adsorption analysis to validate the attraction forces of the nanocomposite with carbonate rocks and repulsion forces with sandstones.

Main results: Dynamic chemical flood tests were performed to confirm the effectiveness of this material in increasing oil production and showed 8.5% and 6.35% increase in oil production for carbonate and sandstone lithologies, respectively. Relative permeability diagrams showed an intersection point in the carbonate system with a 10% increase in water saturation and an intersection point in the sandstone system with a 12% increase in water saturation and the behavioral effect of the material at the studied concentrations.

کلیدواژه‌ها English

Nanocomposite
CuO/TiO2/PAM
Enhanced oil recovery
Flooding
Relative permeability
[1] D. Zhu, L. Wei, B. Wang, and Y. Feng, “Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs,” Energies, vol. 7, no. 6, pp. 3858–3871, 2014.
[2] R. S. Kumar, R. Narukulla, and T. Sharma, “Nanofluid for Oil Recovery Applications : Dispersion Stability and Nanoparticle Combination Results,” pp. 1–7, 2014.
[3] H. Ding and S. Rahman, “Experimental and theoretical study of wettability alteration during low salinity water flooding-an state of the art review,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 520, pp. 622–639, 2017.
[4] H. Rezvani, M. Riazi, M. Tabaei, Y. Kazemzadeh, and M. Sharifi, “Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@Chitosan nanocomposites,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 544, pp. 15–27, 2018.
[5] A. A. Isari and M. Eslahati, “Petroleum and Chemical Industry International Feasibility Investigation of A Novel Natural Surfactant Extracted from Eucalyptus Leaves for Enhanced Oil Recovery of Carbonates : Experimental Study,” vol. 1, no. 1, pp. 1–5, 2018.
[6] R. Abhishek, G. S. Kumar, and R. K. Sapru, “Wettability alteration in carbonate reservoirs using nanofluids,” Pet. Sci. Technol., vol. 33, no. 7, pp. 794–801, 2015.
[7] M. Almahfood and B. Bai, “The synergistic effects of nanoparticle-surfactant nanofluids in EOR applications,” J. Pet. Sci. Eng., vol. 171, no. July, pp. 196–210, 2018.
[8] Y. Kazemzadeh, M. Sharifi, M. Riazi, H. Rezvani, and M. Tabaei, “Potential effects of metal oxide/SiO2nanocomposites in EOR processes at different pressures,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 559, pp. 372–384, 2018.
[9] C. Negin, S. Ali, and Q. Xie, Application of nanotechnology for enhancing oil recovery–A review, Petroleum, 2(4), pp.324-333, 2016.
[10] I. Nowrouzi, A.K. Manshad, A.H. Mohammadi, Effects of TiO2, MgO and γ-Al2O3 nano-particles on
wettability alteration and oil production under carbonated nano-fluid imbibition in carbonate oil reservoirs.
Fuel, 259, 116110, 2020.
[11] Y. Assef, D. Arab, P. Pourafshary, Application of nanofluid to control fines migration to improve the
performance of low salinity water flooding and alkaline flooding. J. Pet. Sci. Eng., 124, 331–340, 2014.
[12] S. Kapusta, L. Balzano, P.Te Riele, Nanotechnology applications in oil and gas exploration and production.
In Proceedings of the IPTC 2011: International Petroleum Technology Conference, Bangkok, Thailand, 7 February 2012; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2012
[13] A. Maghzi, R. Kharrat, A. Mohebbi, M.H. Ghazanfari, The impact of silica nanoparticles on the performance
of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel, 123, 123–132, 2014.
[14] A.M.S. Ragab, A.E. Hannora, A Comparative investigation of nano particle effects for improved oil
recovery—Experimental work. In Proceedings of the SPE Kuwait Oil & Gas Show and Conference, Mishref,
Kuwait, 11–14 October 2015.
[15] M. Seid Mohammadi, J. Moghadasi, S. Naseri, An experimental investigation of wettability alteration in
carbonate reservoir using γ-Al2O3 nanoparticles. Iran. J. Oil Gas Sci. Technol., 3, 18–26, 2014.
[16] A. Roustaei, J. Moghadasi, H. Bagherzadeh, A. Shahrabadi, An experimental investigation of polysilicon
nanoparticles’ recovery efficiencies through changes in interfacial tension and wettability alteration.
In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk,
The Netherlands, 12–14 June 2012.
[17] Shah, R.D. Application of nanoparticle saturated injectant gases for EOR of heavy oils. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009
[18] W. Wu, Q. He, C. Jiang, Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies.
Nanoscale Res. Lett., 3, 397–415, 2008.
[19] H. Bahraminejad, A. K. Manshad, M. Riazi, A. Jagar, S. M. Sajadi, A. Keshavarz, “CuO/TiO2/PAM as a novel introduced hybrid agent for water—Oil interfacial tension and wettability optimization in chemical enhanced oil recovery,” Energy and Fuels, vol. 33, no. 11, pp. 10547–10560, 2019
[20] Z. Haddad, C. Abid, H. F. Oztop, and A. Mataoui, “A review on how the researchers prepare their nanofluids,” Int. J. Therm. Sci., vol. 76, no. April 2016, pp. 168–189, 2014.
[21] I. Nowrouzi, A. K. Manshad, and A. H. Mohammadi, “Effects of dissolved binary ionic compounds and different densities of brine on interfacial tension (IFT), wettability alteration, and contact angle in smart water and carbonated smart water injection processes in carbonate oil reservoirs,” J. Mol. Liq., vol. 254, pp. 83–92, 2018.
[22] P.A.St. John, J.D. Winefordner, W.S. Silver, “Microdetermination of dissolved oxygen in water by a rapid spectrophotometric method,” Analytica Chimica Acta, vol. 30, pp. 49-55, 1964
[23] W. Yu and H. Xie, “A review on nanofluids: preparation, stability mechanisms, and applications,” J. Nanomater., vol. 2012, p. 1, 2012.
[24] P. A. Gerakines, W. A. Schutte, J. M. Greenberg, and E. F. van Dishoeck, “The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures,” arXiv Prepr. astro-ph/9409076, 1994.
[25] J. Giraldo, P. Benjumea, S. Lopera, F. B. Cortés, and M. A. Ruiz, “Wettability alteration of sandstone cores by alumina-based nanofluids,” Energy and Fuels, vol. 27, no. 7, pp. 3659–3665, 2013.
[26] M. A. Khairul, K. Shah, E. Doroodchi, R. Azizian, and B. Moghtaderi, “Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids,” Int. J. Heat Mass Transf., vol. 98, pp. 778–787, 2016.
[27] A. Chengara, A. D. Nikolov, D. T. Wasan, A. Trokhymchuk, and D. Henderson, “Spreading of nanofluids driven by the structural disjoining pressure gradient,” J. Colloid Interface Sci., vol. 280, no. 1, pp. 192–201, 2004.
[28] R. Nazari Moghaddam, A. Bahramian, Z. Fakhroueian, A. Karimi, and S. Arya, “Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks,” Energy and Fuels, vol. 29, no. 4, pp. 2111–2119, 2015.
[29] R. Aveyard, B. P. Binks, and J. H. Clint, “Emulsions stabilised solely by colloidal particles,” Adv. Colloid Interface Sci., vol. 100, pp. 503–546, 2003.
[30] P. M. Mcelfresh, C. Olguin, D. Ector, “The application of nanoparticle dispersions to remove paraffin and polymer filter cake damage,” in SPE International Symposium and Exhibition on Formation Damage Control, 2012.