مطالعات ستون بستر ثابت جذب یون نیترات توسط جاذب مونت موریلونیت اصلاح شده

نوع مقاله : پژوهشی کیفی

نویسندگان

1 دانشجوی گروه محیط‌زیست، دانشگاه آزاد اسلامی، واحد علوم‌وتحقیقات، تهران، ایران

2 عضوهیات‌علمی گروه محیط‌زیست، دانشگاه آزاد اسلامی، واحد علوم‌وتحقیقات، تهران، ایران

3 دانشکده شیمی ، واحد شمال تهران ، دانشگاه آزاد اسلامی ، تهران ، ایران

4 دانشیار (ژئوشیمی زیست محیطی) گروه مهندسی محیط زیست ، دانشکده تحصیلات تکمیلی محیط زیست ، دانشگاه تهران ، تهران ، ایران.

چکیده
در ﺳﺎل ﻫﺎی اﺧﯿﺮ، ﺑﻪ دﻟﯿﻞ ﻣﺤﺪودیﺖ ﻣﻨﺎﺑﻊ آبی و اﻓﺰایﺶ ﻏﯿﺮﻣﻌﻤﻮل نیترات در محیط، ﺗﻼش­ﻫﺎی ﺑﺴﯿﺎری جهت حذف و کنترل آن در راﺳﺘﺎی بهره­ مندی از جاذب­ های ﻃﺒﯿﻌﯽ(رس­ها) ﺻﻮرت ﮔﺮﻓﺘﻪ اﺳﺖ. اﻣﺎ با توجه به بار منفی سطحی ذرات بنتونیت، جاذب ﻧﯿﺎزﻣﻨﺪ اﺻﻼح است.

در مطالعه جاری، جذب ستونی نیترات توسط جاذب مونت موریلونیت­ کلسیم اصلاح شده مورد بررسی قرار گرفت. همچنین به­ منظور تغییربار سطحی و افزایش بازدهی جذب سه مرحله­ ی اسیدشویی، لایه گذاری اکسید­روی و بارگذاری سورفکتانت کاتیونی هگزادسیل تری متیل آمونیوم بروماید برروی جاذب انجام شد. برهمکنش مولکولی و کریستالوگرافی مونت موریلونیت خالص و نانو جاذب سنتزی(ACZ) ﺑﺎ ﻃﯿﻒ ﺳﻨﺠﯽ ﻓﺮوﺳﺮخ و آنالیز پرتوایکس ﺷﻨﺎﺳﺎیﯽ ﮔﺮدیﺪ. همچنین مورفولوژی نانو جاذب ACZقبل و بعد از مواجهه با آلاینده نیترات ﺑﺎ اﺳﺘﻔﺎده از ﻣﯿﮑﺮوﺳﮑﻮﭘﯽ اﻟﮑﺘﺮوﻧﯽ روﺑﺸﯽ و میکروسکوپ الکترونی عبوری ارزیﺎﺑﯽشد.. فشردگی نانو ذرات و دسترسی کمتربه منافذ و حفرات در ستون بستر ثابت، سبب کاهش ظرفیت جذب جاذب درون ستون نسبت به حالت ناپیوسته شد. نتایج نشان داد که با افزایش غلظت خوراک ورودی از 80 به 120 و mg/L 150، به ترتیب %67/39 و %88/25 ظرفیت جذب افزایش یافت. کاهش دبی جریان ورودی سبب افزایش زمان نفوذ، برهم­کنش و دسترسی بیشتر به محل­ های اتصال برای یون­های نیترات و در نهایت موجب بهبود عملکرد ستون و افزایش دبی جریان ورودی موجب کاهش ظرفیت جذب و زمان شکست شد. بنابراین جذب یون­ های نیترات توسط مرحله انتقال جرم داخلی، کنترل و به مدت زمان برهم کنش و فرصت نفوذ به درون جایگاه­ های فعال وابسته است. با افزایش در ارتفاع بستر از 4/2 به cm9، افزایش محسوسی در ظرفیت جذب از 60/608 به mg/g 77/167 رخ داد. اثر نوع شوینده و تعداد مراحل بازیابی ستون جذب نشان داد؛ پس از 3 مرحله آبشویی، اسید شویی نقش مهمی درافزایش بازیابی ستون داشت. داده‌های تجربی با ضرایب همبستگی 0/95R2> با دو مدل سینتیکی توماس و یون- نلسون مطابقت داشت. در ﭘﮋوﻫﺶ ﺣﺎﺿﺮ، ستون نانو جاذب ACZ ﺑﻪ ﻋﻨﻮان ﻋﺎﻣﻞحذف سریع یون نیترات از محلول­های آبی معرفی و جهت استفاده در سیستم های تصفیه ﺑﺎ ﻗﺎﺑﻠﯿﺖ اﺳﺘﻔﺎده مجدد پیشنهاد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fixed–bed column studies of nitrate ion adsorption using modified montmorillonite adsorbent

نویسندگان English

Maryam Darvish 1
Lobat Taghavi 2
Shahram Moradi Dehaghi 3
Abdolreza Karbassi 4
1 student of Environment, Islamic Azad University, Science and Research Branch, Tehran, Iran
2 Faculty of Environment, Islamic Azad University, Science and Research Branch, Tehran, Iran
3 Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
4 Associate professor (Geochemistry Ecological) of Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.
چکیده English

Research subject: In recent years, due to limited water resources and the extraordinary increase in nitrates in the environment, efforts to remove and control in order to benefit from the natural adsorbents have been made. Although according to the negatively charged surface of bentonite particles, absorbent needs improvement.

Research approach: In the current study, the adsorption of nitrate columns by the modified calcium montmorillonite adsorbent was investigated. Furthermore, In order to change the surface load and increase the adsorption efficiency, three-step acid leaching, oxidation layering, and loading of the cationic surfactant hexadecyltrimethylammonium bromide on the adsorbent were performed. Molecular interaction and crystallography of pure montmorillonite and synthetic nano-adsorbent (ACZ) were characterized by Fourier transform infrared spectroscopy and X-ray analysis. Moreover, the morphology of ACZ nano adsorbents was evaluated using Transmission electron microscopy and scanning electron microscopy.

Main results: Nanoparticle compaction and less access to pores and cavities in the fixed bed column reduced the adsorbent capacity inside the column compared to the discontinuous system.

The results showed that an increase in inlet concentration from 80 to 150 mg/L increased the adsorption capacity from 67.39 to 88.25 mg/g. Reducing the inlet flow rate increased the penetration time, interaction, and greater access to the binding sites for nitrate ions and finally improved the column performance and increased the inlet flow rate reduced the adsorption capacity and breakthrough time. Therefore, the adsorption of nitrate ions by the stage of internal mass transfer is controlled and depends on the duration of interaction and the possibility of penetration into the active sites. With increasing the bed height from 4.2 to 9 cm, there was a significant increase in adsorption capacity from 60.608 to 77.167 mg/g. The effect of detergents and recovery showed an absorption column; After 3 leaching steps, acid leaching played an important role in increasing column recovery. Experimental data with correlation coefficients of R2>0.95 corresponded to Thomas and Yoon-Nelson kinetic models.

In this study, the ACZ nano adsorbent column for rapid removal of nitrate ions from aqueous solutions was introduced and for use in reusable systems was proposed.


کلیدواژه‌ها English

Nitrate
Nano adsorbent
flow rate
Bed height
Thomas and Yoon-Nelson
[1] Jahangiri-rad M., Jamshidi A., Rafiee M. and Nabizadeh R., Efficiency Assessment of Fixed Bed Adsorption Column For The Removal of Nitrate Using PAN-oxime-nano Fe2O3, Iran. J. Health & Environ, 1 (8), 89-95, 2014.
[2] Kostraba J. N., Gay E. C., Rewers M. and Hamman R. F., Nitrate Levels in Community Drinking Water And Risk of IDDM: An Ecological Analysis, Diabetes Care, 15(11), 1505-1508, 1992.
[3] Darvish M., Moradi Dehaghi Sh., Taghavi L. and Karbassi, A. R., Removal of Nitrate Using Synthetic Nano Composite ZnO/organoclay: Kinetic And Isotherm Studies, Iranian Journal of Chemistry and Chemical Eegineering, 1(39), 105-118, 2018 and references there in.
[4] Ologundudu T. O., Odiyo J. O. and Ekosse G. E., Fluoride Sorption Efficiency of Vermiculite Functionalised With Cationic Surfactant: Isotherm And Kinetics, Applied Sciences, 6(10), 277-291, 2016.
[5] Dehestaniathar S. and Rezaee A., Adsorption of Nitrate from Aqueous Solution Using Activated Carbon Supported FeO, Fe2 (SO4)3, and FeSO4, Journal of Advances In Environmental Health Research (JAEHR), 2(3), 181-188, 2014.
[6] Rezvani P. and Taghizadeh M. M., On Using Clay and Nanoclay Ceramic Granules in Reducing Lead, Arsenic, Nitrate, and Turbidity from Water, Applied Water Science, 5(8), 131- 137, 2018.

[7] Sharma S., Vibhuti V. and Pundhir A., Removal of Fluoride from Water Using Bioadsorbents, Current Research In Microbiology and Biotechnology, 2(6), 509-512, 2014.
[8] Sharma S. K. and Sobti R. C., Nitrate Removal from Ground Water: A Review, Journal of Chemistry, 9(4), 1667-1675, 2012.
[9] Nagendrappa G., Organic Synthesis Using Clay And Clay-Supported Catalysts, Applied Clay Science, 53(2), 106-138, 2011.
[10] Jóźwiak T., Filipkowska U., Szymczyk P., and Mielcarek A., Application of Cross-Linked Chitosan for Nitrate Nitrogen (v) Removal from Aqueous Solutions, Progress on Chemistry and Application of Chitin and its Derivatives, 19(1), 41-52, 2014.
[11] Schoeman J. J., Nitrate-Nitrogen Removal With Small-Scale Reverse Osmosis, Electrodialysis And Ion-Exchange Units In Rural Areas, South African Water Research Commission, 35(5), 721-728, 2009.
[12] Nasseh N., Barikbin B., Taghavi L., and Harifi A., Analysis of Application of The Almond Green Hull Derived Carbon In Hexavalent Chromium Removal From Synthetic Wastewater, J. Env. Sci. Tech, 2 (18), 178-192, 2016.
[13] Ehrampoush M. H., Ghaneian M. T. and Khosravi R., Investigation of Nitrate Removal From Aqueous Solution By EDTA Modified Red Clay In Presence Of Anionic Interferences, Scientific Journal of Kurdistan University of Medical Sciences, 57 (18), 20-32, 2017.
[14] Eslami A., Yazdanbakhsh A. R., Asadi A. and Ghadimi M., Nitrate Removal From Drinking Water Using Modified Natural Clays, Water And Wastewater Consulting Engineers, 3, 127-134, 2012.
[15] Nemati Shamsabad F., Torabi Golsefidi H. and Naji A. M., Effect of Particle Size And Surfactant Concentration On Nitrate Adsorption Efficiency and Desorption By Modified Zeolite With HDTMA In Aqueous Solution, J. of Water and Soil Conservation, 24 (1), 157-172, 2017.
[16] Olgun A., Atar A. and Wang Sh., Batch And Column Studies of Phosphate And Nitrate Adsorption On Waste Solids Containing Boron Impurity, Chemical Engineering Journal, 222, 108-119, 2013.
[17] Samatya S., Kabay N., Yuksel U., Arda M. and Yuksel M., Removal of Nitrate from Aqueous Solution By Nitrate Selective Ion Exchange Resins, Reactive & Functional Polymers, 11(66), 1206-1214, 2006.
[18] Moussavi A. and Asadi H., Nitrate Removal from Ground Water By Purolite A-400 Resin In A Fixed Bed Column, Water and Soil Science, 4 (21), 17-34, 2011.
[19] Enkari M. and Ebrahimh Aghmasjed E., Removal of Nitrate Ion From Aqueous Solution Using OctaDecylAmine Modified Montmorillonite Nanoclay, J. Environ. Water Eng, 4 (4), 286-298, 2019.
[20] Chunhui Fana C. and Yingchao Zh., Adsorption Isotherms, Kinetics And Thermodynamics of Nitrate And Phosphate In Binary Systems On A Novel Adsorbent Derived From Corn Stalks, Journal of Geochemical Exploration, 188, 95-100, 2018.
[21] Xi Y., Mallavarapu M. and Naidu R., Preparation, Characterization of Surfactants Modified Clay Minerals and Nitrate Adsorption, Applied Clay Science, 48, 92-96, 2010.
[22] Battas A., ElGaidoumi A., Ksakas A. and Kherbeche A., Adsorption Study for The Removal of Nitrate from Water Using Local Clay, Scientific World Journal, 1, 1-10, 2019.
[23] APHA-AWWA-WEF, Standard Method for The Examination of Water And Wastewater 20th Edition, American Public Health Association, Washington, D.C, USA, 1998.
[24] Himanshu P., Fixed-Bed Column Adsorption Study: A Comprehensive Review, Applied Water Science, 9, 45-62, 2019.
[25] Nwankwo I. H., Nwaiwu N. E. and Nwabanne J. T., Kinetics of Nitrate Removal From Bed Column, Journal Of Geography, Environment and Earth Science International, 18(4), 1-8, 2018.
[26] Shamsedin M., Nasiri Zarandi M., Fazli M., and Hagh Bin K., Removal of Strontium (II) from Aqueous Solution by Surface Adsorption by Exogel Obtained From TEOS: Investigation of Batch System with Fixed Bed, Journal of Applied Chemistry, 33 (9), 35-50, 2015.
[27] Sohbatzadeh1 H., Keshtkar A. and Safdari1 J., Fixed–Bed Column Studies of U(VI) Biosorption Using Pseudomonas Putida – Chitosan Hybrid Biosorbent, Applied Research in Chemical - Polymer Engineering, 1, 69-81, 2020.
[28] Chafi, M., Akazdam, S., Asrir, C., Sebbahi, L., Gourich, B., Barka, N., Essahli, M. 2015. Continuous fixed bed reactor application for decolorization of textile effluent by adsorption on NaOH treated eggshell. International Scholarly and Scientific Research& Innovation; 9(10): 1242-1248.
[29] Barron- Zambrano J., Szygula A., Ruiz M., Sastre A.M. and Guibal E., Biosorption of Reactive Black 5 from Aqueous Solutions by Chitosan: Column Studies, Journal of Environmental Management, 91, 2675-2669, 2010.
[30] Biswas S. and Mishra U., Continuous Fixed-Bed Column Study and Adsorption Modeling: Removal of Lead Ion from Aqueous Solution by Charcoal Originated from Chemical Carbonization of Rubber Wood Sawdust, Journal of Chemistry, 1, 1-9, 2015.
[31] Palko J. W., Oyarzun D. I., Ha B., Stadermann M. and Santiago J. G., Nitrate Removal from Water Using Electrostatic Regeneration of Functionalized Adsorbent, Chemical Enginering journal, 1, 1-29, 2017.
[32] Golstanifar H., Nasseri S., Mahvi A. H., Dehghani M. H. and Asadi A., Nitrate Removal from Groundwater Resources Using Nano-Gamma-Alumina and Determining the Adsorption Isotherms, Iran. J. Health & Environ, 4 (5), 457-468, 2013.
[33] Jahangiri-rad M., Jamshidi A., Rafiee A. and Nabizadeh R., Adsorption Performance of Packed Bed Column for Nitrate Removal Using PAN-Oxime-Nano Fe2O3, Journal of Environmental Health Science & Engineering, 1 (12), 90-95, 2014.
[34] Sivakumar P. and Palanisamy P. N., Packed Bed Column Studies for the Removal of Acid Blue 92 and Basic Red 29 Using Nonconventional Adsorbent, Indian Journal of Chemical Technology, 16(4), 301-307, 2009.