تولید سیلیکای بی‌شکل از شلتوک برنج شمال به روش آمایش حرارتی و مقایسه عملکرد آن با سیلیکای تجاری در آمیزه لاستیکی بلت تایر رادیال سواری

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه مهندسی شیمی، دانشگاه صنعتی بیرجند

2 اداره تحقیقات و تکنولوژی، شرکت کویرتایر بیرجند

چکیده
شلتوک پوشش بیرونی دانه برنج و محصول جانبی فرایند آسیاب برنج است. در این پژوهش استحصال سیلیکای بی‌شکل[1] از این دورریز کشاورزی به روش آمایش حرارتی و اسیدی/حرارتی مورد مطالعه تجربی قرار گرفت. فرایند کلی به این صورت بود که بعد از سوزاندن شلتوک در فضای آزاد، خاکسترحاصل، اسید شویی و در ادامه خشک شد. در نهایت سیلیکای بی شکل با قرار دادن پودر به‌دست آمده در یک کوره الکتریکی استحصال شد (آمایش اسیدی/حرارتی). همچنین یک نمونه دیگر از سیلیکا با حذف مرحله اسیدشویی تولید شد (آمایش حرارتی). سپس، سیلیکاهای به‌دست آمده پس از مشخصه‌یابی در یک فرمول معمول بلت سیمی تایر به جای سیلیکای رسوبی تجاری استفاده و همه خواص فیزیکی-مکانیکی از جمله نیروی چسبندگی لاستیک به سیم در دو شرایط معمولی و زمان­مندی مطالعه شد. آزمون XRD بر روی دو نمونه نشان داد سیلیکای تولید شده در هر دو روش دارای ساختاری بی‌شکل هستند. همچنین به‌کمک آزمونXRF مشخص شد که درصد خلوص سیلیکای بی‌شکل برای نمونه تولیدشده به‌روش آمایش اسیدی/حرارتی %6/98 و برای نمونه آمایش حرارتی %9/93 است. همچنین نتایج نشان داد چسبندگی لاستیک-به سیم در شرایط معمولی در حضور نمونه‌های جدید سیلیکا اندکی افت می­کند اما همین خاصیت در شرایط زمانمندی شده برای نمونه جدید سیلیکا بهتر از سیلیکای رسوبی تجاری است. سایر خواص آمیزه لاستیکی در حضور گریدهای جدید سیلیکا تغییر محسوسی نشان نداد. درنتیجه می‌توان گفت که شلتوک برنج از پتانسیل بالایی برای تولید سیلیکای مناسب جهت استفاده در آمیزه بلت سیمی تایر برخوردارست.


[1] Amorphous

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation of silica powder from rice husk by thermal treatment and comparison of its performance with commercial silica in blend of passenger radial tire belt

نویسندگان English

Mehdi Shiva 1
morteza golmohammadi 1
Seysd Ali Ziatabar 2
1 Chemical Engineering Department, Birjand University of Technology
2 Department of Research and Technology, Kavir Tire co., Birjand, Iran
چکیده English

Research subject: The rice husk is the coating on a rice grain and a by-product of the rice milling process. In this study, the extraction of amorphous silica from this agricultural residue by thermal as well as acid/thermal treatment method was studied.

Research approach: The process was designed as follows: after burning the paddy in the open field, the obtained ash was washed with acid followed by drying. Finally, the amorphous silica was obtained by placing the prepared powder in an electric furnace (acid/thermal treatment). Also, a sample of silica was produced by eliminating the acid treatment step (thermal treatment). Afterward, the obtained silica powder was employed in a conventional passenger radial tire belt formula instead of commercial precipitated one, and whole the physical-mechanical properties, including rubber-to-wire adhesion force, were studied under normal and aging conditions.

Main results: The results of the XRD demonstrated that the silica produced in both methods were amorphous. The XRF analysis also showed that the purity of amorphous silica were 98.6% and 93.9% for the sample produced by acid/heat treatment and the heat treatment, respectively. The results of the tire test showed that the rubber-to-wire adhesion decreased slightly under normal conditions in the presence of new silica samples, but the same property under the timed conditions for the new silica samples was better than commercial precipitated silica. Other properties of the rubber compound did not change significantly in the presence of new silica grades. As a result, it can be said that rice husk has a potential to produce suitable silica for use in blend of radial tire belt.

کلیدواژه‌ها English

Rice husk
Amorphous silica
Thermal treatment
Acid treatment
Tire
[1] Wagner, M., Reinforcing Silicas and Silicates, Rubber Chemistry and Technology, 49, (3), 703-774, 1976.
[2]Patel, K.G., Shettigar, R.R., and Misra, N.M., Recent Advance in Silica Production Technologies from Agricultural Waste Stream, Journal of Advanced Agricultural Technologies, 4(3), 274-279, 2017.
[3] Cui, J., Sun, H., Luo, Z., Sun, J., and Wen, Z, Preparation of Low Surface Area SiO2 Microsphere from Wheat Husk Ash with a Facile Precipitation Process, Materials Letters, 156, 42-45, 2015.
[4] Ghosh, R., and Bhattacherjee, S., A Review Study on Precipitated Silica and Activated Carbon from Rice Husk, J ournal of Chemical Engineering Process Technology, 4(4), 1-7, 2013.
[5] Haxo Jr, H., and Mehta, P., Ground Rice-Hull Ash as a Filler for Rubber, Rubber Chemistry and Technology, 48, (2), 271-288, 1975.
[6] Chen, H., Wang, W., Martin, J.C., Oliphant, A.J., Doerr, P.A., Xu, J.F., DeBorn, K.M., Chen, C., and Sun, L., Extraction of Lignocellulose and Synthesis of Porous Silica Nanoparticles from Rice Husks: A Comprehensive Utilization of Rice Husk Biomass, ACS Sustainable Chemistry & Engineering, 1 (2), 254-259, 2013.
[7] Hossain, S.S., Mathur, L., and Roy, P., Rice Husk/Rice Husk Ash as an Alternative Source of Silica in Ceramics: A Review, Journal of Asian Ceramic Societies, 6 (4), 299-313, 2018.
[8] Della, V.P., Kühn, I., and Hotza, D., Rice Husk Ash as an Alternative Source for Active Silica Production, Materials letters, 57 (4), 818-821, 2002.
[9] Chakraverty, A., Mishra, P., and Banerjee, H., Investigation of Combustion of Raw and Acid-Leached Rice Husk for Production of Pure Amorphous White Silica, Journal of Materials Science, 23 (1), 21-24, 1988.
[10] Matori, K., Haslinawati, M., Wahab, Z., Sidek, H., Ban, T., and Ghani, W., Producing Amorphous White Silica from Rice Husk, MASAUM Journal of Basic and Applied Sciences, 1 (3), 512-515, 2009.
[11] Todkar, B.S., Deorukhkar, O.A., and Deshmukh, S.M., Extraction of Silica from Rice Husk, International Journal of Engineering Research and Development, 12 (3), 69-74, 2016.
[12] Costa, J.A.S., and Paranhos, C.M., Systematic Evaluation of Amorphous Silica Production from Rice Husk Ashes, Journal of Cleaner Production, 192, 688-697, 2018.
[13] Kalapathy, U., Proctor, A., and Shultz, J., A simple Method for Production of Pure Silica from Rice Hull Ash, Bioresource Technology, 73(3), 257-262, 2000.
[14] Selvakumar, K., Umesh, A., Ezhilkumar, P., Gayatri, S., Vinith, P., and Vignesh, V., Extraction of Silica from Burnt Paddy Husk, International Journal of ChemTech Research, 6(9), 4455-4459, 2014.
[15] Fernandes, I.J., Calheiro, D., Sánchez, F.A., Camacho, A.L.D., Rocha, T.L.A.d.C., Moraes, C.A.M., and Sousa, V.C.d., Characterization of Silica Produced from Rice Husk Ash: Comparison of Purification and Processing Methods, Materials Research, 20, 512-518, 2017.
[16] Adam, F., Chew, T.-S., and Andas, J., A simple Template-Free Sol–Gel Synthesis of Spherical Nanosilica from agricultural biomass, Journal of Sol-Gel Science and Technology, 59(3), 580-583, 2011.
[17] Patil, R., Dongre, R., and Meshram, J., Preparation of Silica Powder from Rice Husk, Journal of Applied Chemistry, 27, 26-29, 2014.
[18] Tolba, G.M., Barakat, N.A., Bastaweesy, A., Ashour, E., Abdelmoez, W., El-Newehy, M.H., Al-Deyab, S.S., and Kim, H.Y., Effective and Highly Recyclable Nanosilica Produced from the Rice Husk for Effective Removal of Organic Dyes, Journal of Industrial and Engineering Chemistry, 29, 134-145, 2015.
[19] Oja, P.K., and Nanosiliko, A., Nanosilica-Reinforced Polymer Composites, Material in Technologies, 47, 285-293, 2013.
[20] Byers, J.T., Fillers for Balancing Passenger Tire Tread Properties, Rubber Chemistry and Technology, 75(3), 527-548, 2002.
[21] Sattayanurak, S., Noordermeer, J.W., Sahakaro, K., Kaewsakul, W., Dierkes, W., and Blume, A., Silica-Reinforced Natural Rubber: Synergistic Effects by Addition of Small Amounts of Secondary Fillers to Silica-Reinforced Natural Rubber Tire Tread Compounds, Advances in Materials Science and Engineering, 1-8, 2019.
[22] Lee, D., and Song, S.H., A Study of Silica Reinforced Rubber Composites with Eco-Friendly Processing Aids for Pneumatic Tires, Macromolecular Research, 27 (9), 850-856, 2019.
[23] Jeon, G.S., Han, M.H., and Seo, G., Enhancing Adhesion Properties Between Rubber Compound and Brass-Plated Steel Cord by Incorporating Silica into Rubber, Journal of Adhesion Science and Technology, 13(2), 153-168, 1999.
[24] Van Ooij, W., Mechanism and Theories of Rubber Adhesion to Steel Tire Cords—An overview, Rubber Chemistry and Technology, 57 (3), 421-456, 1984.
[25] Waddell, W.H., Evans, L.R., Goralski, E.G., and Snodgrass, L.J., Mechanism by Which Precipitated Silica Improves Brass-Coated Wire-to-Natural Rubber Adhesion, Rubber Chemistry and Technology, 69(1), 48-58, 1996.
[26] Van Ooij, W.J., Harakuni, P.B., and Buytaert, G., Adhesion of Steel Tire Cord to rubber, Rubber Chemistry and Technology, 82(3), 315-339, 2009.
[27] Huang, S., Jing, S., Wang, J., Wang, Z., and Jin, Y., Silica White Obtained from Rice Husk in a Fluidized Bed, Powder Technology, 117(3), 232-238, 2001.
[28] Yalcin, N., and Sevinc, V., Studies on Silica Obtained from Rice Husk, Ceramics International, 27(2), 219-224, 2001.
[29] Bakar, R.A., Yahya, R., and Gan, S.N., Production of High Purity Amorphous Silica from Rice Husk, Procedia Chemistry, 19, 189-195, 2016.
[30] Madrid, R., Nogueira, C., and Margarido, F., Production and Characterisation of Amorphous Silica from Rice Husk Waste, in Editor (Ed.)^(Eds.): ‘Book Production and characterisation of amorphous silica from rice husk waste’ (2012, edn.), pp.
[31] Sankar, S., Sharma, S.K., Kaur, N., Lee, B., Kim, D.Y., Lee, S., and Jung, H., Biogenerated Silica Nanoparticles Synthesized from Sticky, Red, and Brown Rice Husk Ashes by a Chemical Method, Ceramics International, 42 (4), 4875-4885, 2016.