[1]. Snorradóttir, B. S., Gudnason, P. I., Thorsteinsson, F., & Másson, M., Experimental design for optimizing drug release from silicone elastomer matrix and investigation of transdermal drug delivery, European Journal of Pharmaceutical Sciences, 42, 559-567, 2011.
[2]. Nahrup, J. Schulze, Z. M. Gao, J. E. Mark, and A. Sakr., Poly (dimethylsiloxane) coatings for controlled drug release—polymer modifications, International Journal of Pharmaceutics, 270, 199-208, 2004.
[3]. Vilanova, N., Rodríguez-Abreu, C., Fernández-Nieves, A., & Solans, C., Fabrication of novel silicone capsules with tunable mechanical properties by microfluidic techniques, ACS Applied Materials & Interfaces, 5, 5247-5252, 2013.
[4]. Rankin, J.M., Neelakantan, N.K., Lundberg, K.E., Grzincic, E.M., Murphy, C.J. and Suslick, K.S., Magnetic, fluorescent, and copolymeric silicone microspheres, Advanced Science 2, 1500114, 2015.
[5]. Pinho, D., Muñoz-Sánchez, B.N., Anes, C.F., Vega, E.J. and Lima, R., Flexible PDMS microparticles to mimic RBCs in blood particulate analogue fluids, Mechanics Research Communications, 100, 103399, 2019.
[6]. Akamatsu, K., Ogawa, M., Katayama, R., Yonemura, K. and Nakao, S.I., A facile microencapsulation of phase change materials within silicone-based shells by using glass capillary devices. Colloids and Surfaces A, 567, 297-303, 2019.
[7]. Goller, M.I., Obey, T.M., Teare, D.O., Vincent, B. and Wegener, M.R., Inorganic “silicone oil” microgels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 123, 183-193, 1997.
[8]. Liu, Y., Lan, K., Bagabas, A.A., Zhang, P., Gao, W., Wang, J., Sun, Z., Fan, J., Elzatahry, A.A. and Zhao, D., Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High‐Efficiency Photoconversion, Small, 12, 860-867, 2016.
[9]. Zhang, M., Wang, W., Xie, R., Ju, X., Liu, Z., Jiang, L., Chen, Q. and Chu, L., Controllable microfluidic strategies for fabricating microparticles using emulsions as templates, Particuology 24, 18-31, 2016.
[10]. Marquis, M., Alix, V., Capron, I., Cuenot, S. and Zykwinska, A., Microfluidic encapsulation of pickering oil microdroplets into alginate microgels for lipophilic compound delivery, ACS Biomaterials Science & Engineering, 2, 535-543, 2016.
[11]. Park, J.I., Saffari, A., Kumar, S., Günther, A. and Kumacheva, E., Microfluidic synthesis of polymer and inorganic particulate materials, Annual Review of Materials Research, 40, 415-443, 2010.
[12]. Nguyen, H.T., Marquis, M., Anton, M. and Marze, S., Studying the real-time interplay between triglyceride digestion and lipophilic micronutrient bioaccessibility using droplet microfluidics. 1 lab on a chip method, Food Chemistry, 275, 523-529, 2019.
[13]. Montoya, N.V., Peterson, R., Ornell. K.J., Albrecht, D.K., and Coburn. J.M., Silk Particle Production Based on Silk/PVA Phase Separation Using a Microfabricated Co-flow Device, Molecules, 25, 890, 2019.
[14]. Opalski, A.S., Kaminski, T.S. and Garstecki, P., Droplet microfluidics as a tool for the generation of granular matters and functional emulsions, KONA Powder and Particle Journal 36 50-71, 2019.
[15]. Vladisavljević, G.T., Al Nuumani, R. and Nabavi, S.A., Microfluidic production of multiple emulsions, Micromachines, 8, 75, 2017.
[16]. Seo, M., Nie, Z., Xu, S., Mok, M., Lewis, P.C., Graham, R. and Kumacheva, E., Continuous microfluidic reactors for polymer particles, Langmuir, 21, 11614-11622, 2005.
[17]. Abate, A.R., Kutsovsky, M., Seiffert, S., Windbergs, M., Pinto, L.F., Rotem, A., Utada, A.S. and Weitz, D.A., Synthesis of Monodisperse Microparticles from Non‐Newtonian Polymer Solutions with Microfluidic Devices, Advanced Materials, 23, 1757-1760, 2011.
[18]. Utada, A.S., Fernandez-Nieves, A., Stone, H. A. and Weitz, D. A., Dripping to jetting transitions in coflowing liquid streams, Physical Review Letters, 99, 094502, 2007.
[19]. Garstecki, P., Ganan-Calvo, A.M. and Whitesides, G.M., Formation of bubbles and droplets in microfluidic systems, Technical Sciences, 53, 361-372, 2005.
[20]. Lin, X., Bao, F., Tu, C., Yin, Z., Gao, X., Lin, J. Dynamics of bubble formation in highly viscous liquid in co-flowing microfluidic device, Microfluidics and Nanofluidics, 23, 2019.
[21]. Pinho, D., Campo-Deano, L., Lima, R. and Pinho, F.T., In vitro particulate analogue fluids for experimental studies of rheological and hemorheological behavior of glucose-rich RBC suspensions, Biomicrofluidics, 11, 054105, 2017.
[22]. Calejo, J., Pinho, D., Galindo-Rosales, F.J., Lima, R. and Campo-Deaño, L., Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction, Micromachines, 7, 4, 2016.
[23]. Muñoz-Sánchez, B.N., Silva, S.F., Pinho, D., Vega, E.J. and Lima, R., Generation of micro-sized PDMS particles by a flow focusing technique for biomicrofluidics applications, Biomicrofluidics, 10, 014122, 2016.