بهینه سازی خواص ضد خوردگی پوشش های اپوکسی حاوی پیگمنت زینک فسفات و نانو سیلیکا

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه آزاد اسلامی- واحد تهران جنوب- گروه مهندسی پلیمر

2 دانشگاه آزاد اسلامی واحد تهران جنوب- گروه مهندسی پلیمر

چکیده
در این پژوهش به بررسی خواص ضد خوردگی پوشش های اپوکسی حاوی زینک فسفات (به عنوان عامل ضد خوردگی) به همراه نانو سیلیکای آبگریز با ترکیب درصد های مختلف با استفاده از روش طراحی آزمایش تاگوچی پرداخته خواهد شد. خواص ضد خوردگی پوشش های اپوکسی تحت تاثیر فاکتورهای بسیار مهم مانند درصد نانوسیلیکا، درصد پیگمنت ضد خوردگی و نسبت پیگمنت به رزین بر اساس روش تاگوچی مدل 9L مورد تجزیه تحلیل قرار گرفت. خواص ضدخوردگی پوشش اپوکسی توسط آزمون طیف سنجی امپدانس الکتروشیمیایی (EIS) در محلول آبی NaCl 5/3 درصد و آزمون مه نمکی (سالت اسپری) مورد بررسی قرار گرفتند. میکروسکوپ الکترونی روبشی (SEM) به منظور بررسی نحوه توزیع و پخش ذرات نانو سیلیکا در رزین اپوکسی استفاده شد. بر اساس نتایج به دست آمده از آزمون های خوردگی برمبنای نمودارهای نایکوئیست تعیین شرایط بهینه نشان می دهد که نمونه حاوی 8% پیگمنت زینک فسفات و 3% نانو سیلیکا و نسبت پیگمنت به رزین 1 بیشترین مقاومت به خوردگی را نشان می دهد. از طرفی این طلب در خصوص آزمون مه نمکی نمونه ها مشاهده شد که اضافه کردن همزمان زینک فسفات و نانوسیلیکا به رزین اپوکسی سبب کاهش تاول ها و محصولات خوردگی شده است و بهترین خواص ضد خوردگی زمانی مشاهده شد که از 8 درصد زینک فسفات، 3 درصد نانو سیلیکا و نسبت پیگمنت به رزین 1 استفاده شده بود. نتایج به دست آمده در این پژوهش حاکی از آن است که خواص بازدارندگی زینک فسفات و خواص ممانعتی ناشی از حضور نانوسیلیکا در پوشش اپوکسی تاثیر بسزایی در کاهش میزان خوردگی را دارا می باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of anti- Corrosion of Epoxy/Zinc Phosphate and Nano Silica coating

نویسندگان English

Siamak Mirzababaei 1
Mohammadreza Kalaee 2
1 Polymer Engineering Group, Faculty of Engineering, South Tehran Branch, Islamic Azad University
2 Polymer Engineering Group, Faculty of Engineering, South Tehran Branch, Islamic Azad University
چکیده English

Research subject: In this research we studied the anti-corrosion properties of epoxy coating containing anti-corrosion pigment zinc phosphate with hydrophobic nano silica with different percentage also for determine the optimal conditions for preparation of nanocomposite Taguchi experimental design method was used.



Research approach: Anti-corrosion properties of epoxy coating under the influence of very important factors such as the percentage of nano silica, anticorrosive pigment and pigment to resin ratio according to model L9 taguchi method was studied and analyzed. Anti-corrosion properties of epoxy coatings were studied by electrochemical impedance spectroscopy test (EIS) in 3/5% NaCl aqueous solution and salt fog test (salt spray). To investigate the distribution of nano silica particles in epoxy resin were analyzed by transmion electron microscope (TEM) and scanning electron microscope (SEM). The results show that using from zinc phosphate and nano-silica was able to improve the corrosion resistances.



Main results:Results shows that addition of zinc phosphate and nano silica to epoxy resin caused a decrease in number of blisters and corrosion products after exposure to corrosion test based on the results in Nyquist and Bode plots, also the similarity in results was observed for the epoxy coating loaded according to the optimum conditions with 8% zinc phosphate, 3% nano silica and pigment to resin ratio of one according to salt spary. The significance levels of the experimental parameters, which indicate how the factors affect the compressive addition of zinc phosphate and nano silica to epoxy resin, were determined by using variance (Anova) method.



کلیدواژه‌ها English

Corrosion of Epoxy Coating
Zinc Phosphate Pigment
Taguchi method
Nano Silica
[1] Zarrabi A., Heydarpour M.R., Attar M.M, Ramezanzadeh B., Studying the Corrosion Protection Properties of an Epoxy Coating Containing Different Mixtures of Strontium Aluminum Polyphosphate and Zinc Aluminum Phosphate Pigments, 2014 77,160– 16, Progress in Organic Coatings.
[2] Khalid Hussain A., Sudin I., Basheer U.M., Yusop M., A review on graphene-based polymer composite coatings for the corrosion protection of metals, 2019, 4, 37, Corrosion Reviews.
[3] Palimi M.J., Alibakhshi E., Ramezanzadeh B., Bahlakeh G., Mahdavian M., Screening the anti-corrosion effect of a hybrid pigment based on zinc acetyl acetonate on the corrosion protection performance of an epoxy-ester polymeric coating, 2018, 82,261-272, Journal of the Taiwan Institute of Chemical Engineers.
[4] Naderi D., Mahdavian A., Electrochemical Examining Behavior of Epoxy Coating Incorporating Zinc Free Phosphaed Based AAnti-Corrosion Pigment, 2013, 76, 302-306, Progress in Organic Coatings.
[5] Beiro M., Collazo A.,Izquierdo, Nóvoa Pérez X., Characterisation of Barrier Properties of Organic Paints: the Zinc Phosphate Effectiveness, 2003, 46, 97-106,Progress in Organic Coatings.
[6] Challener C., Corrosion Preventation in Paints and Coatings, 2005, 2, 42-47, Journal of coatings Technology.
[7] Ravichndran R., Coughlin R., Novel Corrosion Inhibitord, 2015, 26-38, Paint and coatings industry.
[8] Sorensen P.A., Kiil S.,.Dam-Johansen K, Weinell C.E., Anticorrosive Coatings:a review, 2009, 6, 135-176, Journal of Coating and Technology Research.
[9] Mahdavian M., Attar M.M., Evaluation of Zinc Phosphate and Zinc Chromate Effectiveness via AC and DC methods, 2005, 53, 191-194, Progress in Organic Coatings.
[10] Ghanbari A., Attar M.M., An Improvemnet to the Anticorrosive Properties of Epoxy Powder Coating by Zinc Phosphate and Zinc Chromate Pigments,2013, 3, 9-14, Journal of Petroleum Science and Technology.
[11] Balaskas A.C., Kartsonakis I.A., Tziveleka L.A., Kordas G.C., Improvement of Anti-corrosive Properties of Epoxy Coated AA2024-T3 with Tio2 Nanocontainers Loaded with 8-hydroxyquinoline, 2012, 74, 418-426, Progress in Organic Coatings.

[12] Shi H., Liu F., Yang Li., Han E., Characterization of Protective Performance of Epoxy Reinforced with Nanometer-Sized TiO2 and SiO2, 2008, 62, 359-369, Progress in Organic Coatings.
[13] Shatakshi Verma S., Das S., Mohanty S., Nayak S.K., Development of multifunctional polydimethylsiloxane (PDMS)‐epoxy‐zinc oxide nanocomposite coatings for marine applications, 2019, 9, 30, 2275-2300, Polymers Advanced Technologies.
[14] Bagherzadeh M.R., Mahdavi F., Preparation of Epoxy–Clay Nanocomposite and Investigation on its Anti-corrosive Behavior in Epoxy Coating, 2007, 60, 117-120, Progress in Organic Coatings.
[15] Ranjbar Z., Ashhari Sh., Jannesari A., Montazeri Sh., Effects of Nano Silica on the Anticorrosive Properties of Epoxy Coatings,2013, 6, 119-128, Progress Color and Colorants Coating.
[16] Moradian S., Dolatzadeh F., Jalili M. M., Influence of Various Surface Treated Silica Nanoparticles on the Electrochemical Properties of SiO2/Polyurethane Nano coatings, 2011, 53, 4248-4257, Corrosion Science.
[17] Dastmalchian H., Moradian S., Jalili M. M., Mirabedini S. M., Investigating Changes in Electrochemical Properties when Nano-Silica is Incorporated into an Acrylic-based Polyurethane Clearcoat, 2012, 9, 135-201, Journal of Coating and Technology Research.
[18] Joulazadeh M., Navarchian A.H., Effect of Process Variables on Mechanical Properties of Polyurethane/Clay Nanocomposites, 2010, 21, 263-271, Polymer Advanced Technologies.
[19] Shi X., Anh Nguyen T., Suo Z., Liu Y., Avci R., Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy coating, 2009, 204, 237-245, Surface & Coatings Technology.
[20] Ghorbani S., Kalaee M., Investigating of Factors Affecting the Corrosion Protection of Epoxy Primer containing Calcium Hydrogen Orthophosphate and Nano Silica Using Taguchi Method, 2017, 1, 149-162, Progress Color and Colorants Coating .
[21] Joseph Rathish R., Dorothy R., M.Joany R.,.Pandiarajan M., Rajendran S., Corrosion Resistance of Nanoparticle Incorporated Nano Coatings,2013, 2(12), 965-972, European Chemical Bulletin.
[22] Xianming Shi , Tuan Anh Nguyen, Zhiyong Suo, Yajun Liu, Recep Avci , Effect of Nanoparticles on the Anticorrosion and Mechanical Properties of Epoxy Coating, 2009, 204, 237-245, Surface & Coatings Technology.
[23] Palraj S., Selvaraj M., Maruthan K., Rajagopal G., Corrosion and Wear Resistance Behavior of Nano-Silica Epoxy Composite Coatings, 2015, 81, 132-139, Progress in Organic Coatings.
[24] Wang N., Wu K.H.H., Wang Ch., Wang F., Effect of Nano-Sized Mesoporous Silica MCM-41 and MMT on Corrosion Properties of Epoxy Coating, 2012, 75, 386-339, Progress in Organic Coatings.
[25] S. A. Haddadi, S.A., Ramazani S. A., Mahdavian M., Taheri P., Mol
J.M.C., Mechanical and Corrosion Protection Properties of a Smart Composite Epoxy Coating with Dual-Encapsulated Epoxy/Polyamine in Carbon Nanospheres, 2019, 58,8, 3033-3046, Industrial & Engineering Chemistry Research.