تأثیر نوع و غلظت یون های فاز آبی بر ترشوندگی سطح کلسیت و کشش بین سطحی نفت اسیدی-آب نمک

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه مهندسی نفت، دانشکده نفت و مهندسی شیمی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات

2 انستیتو مهندسی نفت، دانشگاه تهران، تهران، ایران

3 گروه مهندسی نفت، دانشکده نفت و مهندسی شیمی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده
چکیده

در فرایند تزریق آب به مخزن، بخشی از مواد فعال سطحی که به­طور طبیعی در نفت وجود دارند، می­توانند درآب تزریقی حل شوند. وجود این مواد پدیده­های سطحی، سامانه سه فازی آب-نفت-سنگ را تحت تأثیر قرار می‌دهد. تأثیر این مواد به­منظور اصلاح ترکیب یونی آب تزریقی، در مطالعات پیشین کمتر مورد­ توجه بوده است. در این مقاله ابتدا تأثیر ترکیبات اسیدی موجود در نفت خام و ترکیب آب اولیه بر ترشوندگی اولیه سنگ کربناته بررسی شد. سپس جهت بررسی تغییرات ترشوندگی سنگ کلسیتی نفت­دوست از آب نمک­های منیزیم­کلرید، کلسیم کلرید، پتاسیم کلرید و سدیم سولفات با مولاریته بین 1/0 تا 1 استفاده شد. کشش بین­سطحی نفت با آب مقطر و نمونه­های آب نمک با غلظت­های یونی مختلف به­طور جداگانه اندازه­گیری و مقایسه شد. تغییر در خواص سطحی نمونه­های سنگ کلسیت از طریق اندازه­گیری زاویه تماس پس از پیرسازی نمونه­های مقطع نازک در آب نمک­ها و نفت مورد بررسی قرار گرفت.

نتایج نشان داد که با افزایش غلظت یون­ها و قدرت یونی محلول­های نمکی، به­دلیل انحلال ترکیبات اسیدی نفت در سطح تماس دو فاز آب و نفت، کشش بین‌سطحی کاهش می­یابد. همچنین در صورت غالب بودن ترکیبات اسیدی در نفت، یون منیزیم بیشترین تأثیر را در کاهش کشش بین‌سطحی و تغییر ترشوندگی سنگ دارد. به‌طوری که با افزایش غلظت آن تا 1 مولار، کشش بین‌سطحی به مقدار 1 (mN/m) و زاویه تماس به 42 درجه کاهش می­یابد. اندازه­گیری زاویه تماس نشان داد که ترکیب آب اولیه موجود در سنگ مخزن بر تغییر ترشوندگی اولیه سنگ موثر بوده و تشکیل لایه یونی-آلی در مجاورت سطح سنگ از مهم­ترین عوامل تغییر ترشوندگی است. حضور یون منیزیم در آب اولیه موجود در سنگ، موجب کاهش زاویه تماس به 145 درجه و افزایش آب­دوستی در سطح سنگ می­شود. همچنین افزایش حلالیت ترکیبات اسیدی محلول در نفت در فاز آبی بر تغییرات ترشوندگی سنگ تأثیر زیادی دارد. نتایج به­دست آمده نشان داد که برهم­کنش بین یون­های موجود در فاز آبی بخصوص کاتیون­ها و آنیون­های دو ظرفیتی و مواد فعال سطحی (کربوکسیلیک اسید) رفتار سطحی آب را در تماس با فاز نفت و سنگ مشخص می­کند.

واژه های کلیدی: ترشوندگی، کشش بین­سطحی، ترکیبات اسیدی نفت، یون­های دو ظرفیتی، لایه یونی-آلی

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Impact of Aqueous Phase Ion Type and Concentration on Calcite Surface Wettability and Acidic Oil-Brine IFT

نویسندگان English

Sepehr Zamanpour 1
Alireza Bahramian 2
Mastaneh Hajipour 3
1 Petroleum Engineering Department, Faculty of Petroleum and Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
2 Institute of Petroleum Engineering, University of Tehran, Tehran, Iran.
3 Petroleum Engineering Department, Faculty of Petroleum and Chemical Engineering, Islamic Azad University Science and Research Branch, Tehran, Iran
چکیده English

Abstract:

Research subject: In water injection process, part of the surface active agents that are naturally present in oil can be dissolved in injected water. The presence of these substances affects the surface phenomena of the three phase water-oil-rock system. The effect of these substances on modification of the ionic composition of injected water has been less investigated in previous studies.

Research approach: In this paper, first, the effects of acidic compounds in crude oil and connate water composition on initial wettability of carbonate rock were investigated. Then to investigate the wettability changes of oil-wet calcite rock, single-salt aqueous solutions of MgCl2, CaCl2, KCl, and Na2SO4 having concentrations of 0.1 to 1 molar were used.

Oil–water interfacial tension (IFT) for distilled water and salt waters in various concentrations were measured and compared. Variations of calcite rock surface properties were investigated by contact angle measurement after aging of thin sections in oil and salt waters.

Main results: Results indicated that by increasing ion concentration and ionic strength of salt waters, IFT decreases due to dissolution of acidic compounds of oil at the interface of oil and water. Moreover, for high content of acidic compounds in the oil, Magnesium ion has the most impact on reducing IFT and altering the rock wettability. So that by increasing the concentration up to 1 molar, IFT and contact angle decrease to 1 mN/m and 42 degrees, respectively.

Contact angle measurements revealed that the composition of connate water is effective in changing the initial wettability of the rock, and formation of ionic-organic layer adjacent to the rock surface is one of the most important factors in wettability alteration. The presence of Magnesium ion in connate water decreases the contact angle to 145 degrees and causes the rock surface to become more water wet.

Also, increasing solubility of oil-soluble acidic compounds in the aqueous phase has a significant effect on the rock wettability. The experimental results showed that the interaction between ions in the aqueous phase, especially the divalent ions, and surface active agents (carboxylic acid) determine the surface behavior of water in contact with oil and rock.



Keywords: Wettability, IFT, Acidic oil, Divalent ions, Ionic-organic layer

کلیدواژه‌ها English

Wettability
IFT
Acidic oil
Divalent ions
Ionic-organic layer
[1] Austad T. Water-based EOR in carbonates and sandstones: new chemical understanding of
the EOR potential using smart water. Enhanced oil recovery Field case studies, 2013.
[2] Shirazi M, Farzaneh J, Kord S, Tamsilian y. Smart water spontaneous imbibition into oil-wet carbonate reservoir cores: Symbiotic and individual behavior of potential determining ions. Journal of Molecular Liquids 299, 112102, 2020.
[3] Generosi J, Ceccato M, Andersson, MP, et al. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42−. Energy Fuels, 31 (1), 1005−1014, 2017.
[4] Hao J, Mohammadkhani S, Shahverdi H, Nasr EsfahanyM, Shapiro A. Mechanisms of smart waterflooding in carbonate oil reservoirs - A review. Journal of Petroleum Science and Engineering 179, 276-291, 2019.
[5] Alvarado V, Garcia-Olvera G, Hoyer P, Lehmann TE. Impact of polar components on crude oil-water interfacial film formation: A mechanisms for low-salinity waterflooding. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Amsterdam, 2014.
[6] Bidhendi MM, Garcia-Olvera G, Morin B, Oakey JS, Alvarado V. Interfacial Viscoelasticity of Crude Oil/Brine: An Alternative Enhanced-Oil-Recovery Mechanism in Smart Waterflooding. SPE Journal 23(3), 803-818, 2018.
[7] Chávez-Miyauchi TE, Firoozabadi A, Fuller GG. Nonmonotonic Elasticity of the Crude Oil–Brine Interface in Relation to Improved Oil Recovery. Langmuir 32(9), 2192-2198, 2016.
[8]Emadi A, Sohrabi M. Visual Investigation of Oil Recovery by LowSalinity Water Injection: Formation of Water Micro-Dispersions and WettabilityAlteration. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Richardson, 2013.
[9] Al-Attar HH, Mahmoud MY, Zekri AY, Almehaideb R, Ghannam M. Low-salinity flooding in a selected carbonate reservoir: experimental approach. Petroleum Exploration and Production Technology 3(2), 139-149, 2013.
[10] Song J, Wang Q, Shaik I, et al. Effect of salinity, Mg2+ and SO42− on “smart water”-induced carbonate wettability alteration in a model oil system. Journal of Colloid and Interface Science 563, 145-155, 2020.
[11] Farooq U, Simon S, Tweheyo MT, Øye G, Sjöblom J. Interfacial tension measurements between oil fractions of a crude oil and aqueous solutions with different ionic composition and pH. Journal of Dispersion Science and Technology 34(5), 701-708, 2013.
[12] Saeedi Dehaghani AM, Hosseini M, Tajikmansori A, Moradi H. A mechanistic investigation of the effect of ion-tuned water injection in the presence of cationic surfactant in carbonate rocks: An experimental study. Journal of Molecular Liquids 304(15), 112781, 2020.
[13] Honarvar B, Rahimi A, Safari M, Khajehahmadi S, Karimi M. Smart water effects on a crude oil-brine-carbonate rock (CBR) system: Further suggestions on mechanisms and conditions. Journal of Molecular Liquids 299, 112173, 2020.
[14] Rahimi A, Honarvar B, Safari M. The role of salinity and aging time on carbonate reservoir in low salinity seawater and smart seawater flooding. Journal of Petroleum Science and Engineering 187,106739, 2020.
[15] Koleini MM, Badizad MH, Ghatee MH, Ayatollahi S. An atomistic insight into the implications of ion-tuned water injection in wetting preferences of carbonate reservoirs. Journal of Molecular Liquids 293, 111530, 2019.
[16] Karimi M, Al-Maamari RS, Ayatollahi S, Mehranbod N. Mechanistic study of wettability alteration of oil-wet calcite: The effect of magnesium ions in the presence and absence of cationic surfactant. Colloids and Surfaces A 482(5), 403-415, 2015.
[17] Heineman ZE. Fluid Flow in Porous Media, Leoben, 2005.
[18] Hua W, Huang Z, Jubb AM, Allen HC. Ion Organization and Reversed Electric Field at Air/aqueous Interfaces Revealed by Heterodyne-Detected Sum Frequency Generation Spectroscopy. 67th International Symposium on Molecular Spectroscopy, Columbus, 2012.
[19] Marcus Y. Ionic radii in aqueous solutions. Chemical Reviews 88(8), 1475–98, 1988.
[20] Karakashev, SI. How to determine the adsorption energy of the surfactant’s hydrophilic head? How to estimate easily the surface activity of every simple surfactant? Journal of Colloid and Interface Science 432, 98-104, 2014.
[21] Kumar B. Effect of Salinity on the Interfacial Tension of Model and Crude Oil Systems,
MS Thesis, Calgary, Alberta, September 2012.
[22] Derikvand Z, Rezaei A, Parsaei R, Riazi M, Torabi F. A mechanistic experimental study on the combined effect of Mg2+, Ca2+, and SO42- ions and a cationic surfactant in improving the surface properties of oil/water/rock system. Colloids and Surfaces A 587, 124327, 2020.
[23] Lashkarbolooki M, Ayatollahi S, Riazi M. Mechanistical Study of Effect of Ions in Smart Water Injection into Carbonate Oil Reservoir. Process Safety and Environmental Protection 105, 361−372, 2017.
[24] Jiao T, Liu X, Niu J. Effects of sodium chloride on adsorption at different interfaces and aggregation behaviors of disulfonate gemini surfactants. Rsc Advances 6(17), 13881-13889, 2016.
[25] Kakati A, Sangwai JS. Wettability Alteration of Mineral Surface during Low-Salinity Water Flooding: Role of Salt Type, Pure Alkanes, and Model Oils Containing Polar Components. Energy Fuels 32(3), 3127−3137, 2018.
[26] Generosi J, Ceccato M, Andersson, MP, et al. Calcite Wettability in the Presence of Dissolved Mg2+ and SO42−. Energy Fuels 31(1), 1005−1014, 2017.
[27] Chen S-Y, Kaufman Y, Kristiansen K, Seo D, Schrader AM, Alotaibi MB, et al. Effects of Salinity on Oil Recovery (the “Dilution Effect”): Experimental and Theoretical Studies of Crude Oil/Brine/Carbonate Surface Restructuring and Associated Physicochemical Interactions. Energy Fuels 31(9), 8925-8941, 2017.
[28] Fathi SJ, Austad T, Strand S. Water-Based Enhanced Oil recovery (EOR) by "Smart Water" in Carbonate Reservoirs. SPE EOR Conference at Oil and Gas West Asia, Muscat, 2012.
[29] Liu F, Wang M. Review of low salinity waterflooding mechanisms: Wettability alteration and its impact on oil recovery. Fuel 267, 117112, 2020.
[30] Shaik IK, Song J, Biswal SL, Hirasaki GJ, Bikkina PK, Aichele CP. Effect of brine type and ionic strength on the wettability alteration of naphthenic-acid-adsorbed calcite surfaces.
Journal of Petroleum Science and Engineering 185, 106567, 2020.