بهینه سازی مقاومت پارگی و مانایی فشاری فنر لاستیکی برپایه آلیاژ EPDM/NR

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده
فنرهای لاستیکی لاستیک اتیلن-پروپیلن دی ان مونومر (EPDM) با ساختاری اسفنجی باید علاوه بر مانایی فشاری مطلوب، از مقاومت پارگی قابل قبولی بهره‌مند باشند. معمولا تقویت هر یک از این خواص به تضعیف خاصیت دیگر منجر می‌شود. تامین هم‌زمان مقدار بهینه‌ این دو خاصیت در آمیزه‌ فنر لاستیکی، نیازمند ارزیابی عوامل موثر از طریق انجام آزمون‌های متعدد است. بنابراین در این پژوهش طرح آزمونی بر مبنای تکنیک‌ تحلیل آماری برای طراحی فرمولاسیون بهینه در ازای کاهش تعداد آزمون‌‌های لازم ارائه شد. بر این ‌اساس تاثیر چهار عامل: 1- درصد وزنی کائوچوی طبیعی (NR) در لاستیک پایه، 2- مقدار اکسید روی (ZnO)، 3- مقدار دی‌کیومیل پراکسید (DCP)‌ و 4- مقدار اتیلن گلیکول دی‌متاکریلات (EDMA) بر نسبت مقاومت پارگی به مانایی فشاری (به‌عنوان معیار طراحی، Q‌) تعیین شد. تحلیل نتایج نشان داد که مقدار DCP با سهم تاثیر 93/66 درصد، موثرترین عامل در طراحی آمیزه فنر لاستیکی است. همچنین مشخص شد که طراحی سیستم پخت، راه حل بهینه‌سازی هم‌زمان بیشینه انرژی پارگی وکمینه مانایی فشاری آمیزه است. تحلیل‌ آماری پیش‌بینی کرد که فرمولاسیون بهینه‌ حاوی 60 درصد وزنی NR و 1، 4 وphr‌ 2 به ‌ترتیب از عامل‌های DCP، ZnO و EDMA است. نتایج آزمون‌های تجربی، مقدار Q پیش‌بینی شده برای شرایط بهینه را تایید کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of tear resistance and compression set at rubber spring based on EPDM/NR alloy

نویسندگان English

mohammad khabiri
Milad Saadat Tagharoodi
Mohammad Reza Pourhossainy
Mahmoud Razavizadeh
Mashhood Abbasi
Polymer Group Manager
چکیده English

Research subject: The rubber Springs with spong structure must have acceptable tear resistance in addition to desirable compression set. Usually enhancing each of these properties leads to the weakening of the other property.

Research approach: Simultaneously providing the optimum value of these two properties in the rubber spring compound requires consideration of the effective factors by performing several tests. Therefore, in this study, a test plan based on the Taguchi statistical analysis technique was presented to design the optimal formulation in exchange for reducing the number of tests required. Thus, the impact of four factors: weight percent of Natural rubber (NR), concentration of zinc oxide (ZnO), dicumyl peroxide (DCP) and ethylene glycol dimethacrylate (EDMA) on the ratio of tear resistance to compression set (design criterion, Q) was determined.

Main results: Data given of ANOVA showed that the amount of DCP with 66.93% has the highest influence on the design of the rubber spring compound. In addition, it was revealed that the curing system is a solution for the simultaneous optimization to maximum tear energy and minimum compression set of the compound. Statistical analysis predicted that the optimal formulation contained 60 weight percent of NR and 1, 4 and 2 phr of DCP, ZnO and EDMA, respectively. Experimental test results confirmed the predicted Q value for optimal conditions.

کلیدواژه‌ها English

Optimization
Tear strength
Compression set
Rubber spring
EPDM rubber
1. Moulton, A.; Turner, P., Rubber Springs for Vehicle Suspension. Proceedings of the Institution of Mechanical Engineers: Automobile Division, 10, (1), 17-41, 1956.
2. Mullins, L., Engineering with Rubber. " Hear* oi Rubber^ tunxtin jlrt'jEattfea, 189, 1984.
3. Politopoulos, I.; Pham, H. K., Floor Spectra of Mixed Base Isolated Structures. Bulletin of Earthquake Engineering, 9, (4), 1115-1135, 2011.
4. Luo, R.; Wu, W.; Mortel, W., A Method to Predict the Heat Generation in a Rubber Spring Used in the railway Industry. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 219, (4), 239-244, 2005.
5. Derham, C.; Kelly, J.; Thomas, A., Nonlinear Natural Rubber Bearings for Seismic Isolation. Nuclear Engineering and Design, 84, (3), 417-428, 1985.
6. Luo, R.; Wu, W., Fatigue Failure Analysis of Anti-Vibration Rubber Spring. Engineering Failure Analysis, 13, (1), 110-116, 2006.
7. Haberstroh, E.; Opdenwinkel, K., Physical Foaming of EPDM and NBR in the Injection Moulding Process. Kautschuk Und Gummi Kunststoffe, 61, (5), 254, 2008.
8. Rodríguez-Pérez, M., Crosslinked Polyolefin Foams: Production, Structure, Properties, and Applications. In Crosslinking in Materials Science, Springer: 2005; pp 97-126.
9. Velasco, J.; Antunes, M.; Ayyad, O.; López-Cuesta, J.; Gaudon, P.; Saiz-Arroyo, C.; Rodríguez-Pérez, M.; De Saja, J., Foaming Behaviour and Cellular Structure of LDPE/Hectorite Nanocomposites. Polymer, 48, (7), 2098-2108, 2007.
10. Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G., Polymer Nanocomposite Foams. Composites Science And Technology, 65, (15-16), 2344-2363, 2005.
11. Antunes, M.; Realinho, V.; Velasco, J., Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams. Journal of Nanomaterials, 2010, 4, 2010.
12. Zeng, C.; Han, X.; Lee, L. J.; Koelling, K. W.; Tomasko, D. L., Polymer–Clay Nanocomposite Foams Prepared Using Carbon Dioxide. Advanced materials, 15, (20), 1743-1747, 2003.
13. Di, Y.; Iannace, S.; Maio, E. D.; Nicolais, L., Poly (lactic Acid)/Organoclay Nanocomposites: Thermal, Rheological Properties and Foam Processing. Journal of Polymer Science Part B: Polymer Physics, 43, (6), 689-698, 2005.
14. Hopmann, C.; Lemke, F.; Nguyen Binh, Q., Foaming of EPDM with Water as Blowing Agent in Injection Molding. Journal of Applied Polymer Science, 133, (27), 2016.
15. Lawindy, A. M. Y. E.; El‐Kade, K. M. A.; Mahmoud, W. E.; Hassan, H. H., Physical Studies of foamed Reinforced Rubber Composites Part I. Mechanical Properties of foamed ethylene–Propylene–Diene Terpolymer and Nitrile–Butadiene Rubber Composites. Polymer International, 51, (7), 601-606, 2002.
16. Dutta, A.; Cakmak, M., Foaming of Vulcanized PP/EPDM Blends Using Chemical Blowing Agents. Rubber Chemistry And Technology, 65, (4), 778-791, 1992.
17. Shao, L.; Ji, Z.-Y.; Ma, J.-Z.; Xue, C.-H.; Ma, Z.-L.; Zhang, J., The Synergy of Double Cross-Linking Agents on the Properties of Styrene Butadiene Rubber Foams. Scientific Reports, 6, 36931, 2016.
18. Zakaria, Z.; Ariff, Z. M.; Tay, L. H.; Sipaut, C. S., Effect of Foaming Temperature on Morphology and Compressive Properties of Ethylene Propylene Diena Monomer Rubber (EPDM) Foam. Malaysian Polymer Journal, 2, (2), 22-30, 2007.
19. Bayat, H.; Fasihi, M., Curing Characteristics and Cellular Morphology of Natural Rubber/Silica composite Foams. Polymer Bulletin, 2019.
20. Hewitt, N.; Ciullo, P., Compounding Precipitated Silica in Elastomers: Theory and Practice. William Andrew, 2007.
21. Khabiri, M.; Jafari, S. H.; Pourhossainy, M. R.; Khonakdar, H. A., Alteration of Matrix Curing Characteristics and Its Role in Extension of Hydrodynamic Equation for Predicting Viscoelastic Properties of Nitrile Rubber/Silica Nanocomposites. Polymers for Advanced Technologies, 29, (8), 2381-2391, 2018.
22. Babaee, S.; Monjezi, Z.; SAADAT, T. M., Optimizing the Flexural Strength of Epoxy Resin Using Taguchi Statistical Design Method. 2016.
23. Babaee, S.; Monjezi, Z.; Tagharoodi, M. S., Preparation of Epoxy-Based Insulator and Optimization of Its Thermal Property by Taguchi Robust Design Method in Double Base Propellant Grain Application. Iranian Polymer Journal, 26, (3), 213-220, 2017.
24. Saeed, B.; Zahra, M.; Milad, S. T., Statistical Taguchi Optimization for Preparation and Adhesion Evaluation of Epoxy Insulator to the Surface of Double Base Propellant Grain. Journal of New Developments in Chemistry, 2, (1), 38-47, 2018.
25. Pourmortazavi, S. M.; Babaee, S.; Marashianpour, Z.; Kohsari, I., Stabilizing of Magnesium Powder by Microencapsulation With Azidodeoxy Cellulose Nitrate. Progress in Organic Coatings, 81, 107-115, 2015.
26. Hosseini, S.; Pourmortazavi, S.; Fathollahi, M., Orthogonal Array Design for the Optimization of Silver Recovery From Waste Photographic Paper. Separation Science and Technology, 39, (8), 1953-1966, 2005.
27. Roy, R. K., A Primer on the Taguchi Method. Society of Manufacturing Engineers, 2010.
28. Hofmann, W., Technische Elastomere. Kunststoffe, 77, (10), 1057-1064, 1987.