تهیه‌ی غشاهای شبکه‌آمیخته حاوی نانوذرات اکسید آهن نیکل روی جهت جداسازی گازهای دی‌اکسیدکربن، نیتروژن و متان

نوع مقاله : پژوهشی اصیل

نویسندگان

1 دانشگاه تربیت مدرس، دانشکده مهندسی شیمی

2 دانشگاه اراک

چکیده
در چند سال اخیر به­دلیل افزایش گازهای گلخانه­ای در جو کره­ی زمین، مشکلات زیست محیطی فراوانی ایجاد شده است. در دهه گذشته، غشاهای شبکه­آمیخته به­دلیل توانایی مناسب در جداسازی گازهای قطبی از غیرقطبی، بسیار مورد توجه قرار گرفته شده است. در این پژوهش غشای شبکه آمیخته­ی دو جزئی جدید با افزودن نانوذره­ی اکسید آهن نیکل روی به شبکه پلیمری پباکس تهیه شد تا در کنار ویژگی‌های منحصر بفرد این کوپلیمر مانند مقاومت مکانیکی بالا و تراوایی مناسب گازی، از ویژگی‌های نانوذره‌ی مذکور مانند تراوایی و گزینش­پذیری قابل‌توجه و پایداری مکانیکی و گرمایی مناسب آن استفاده شود. آزمون تراوایی گازی بر روی غشاهای پلیمری خالص و شبکه آمیخته‌ی دوجزئی در دمای ۳۵ درجه‌ی سانتیگراد و فشارهای ۲ تا ۱۰ بار انجام شد. همچنین غشاهای ساخته‌شده با آزمون­های FESEM، FTIR-ATR، DSC و XRD مورد ارزیابی قرار گرفتند. نتایج نشان دادند که در غشای بهینه حاوی ۱ درصد وزنی نانوذره در بستر پلیمر، مقدار تراوایی گاز CO2 نسبت به غشای پلیمری خالص در فشار ۱۰ بار، بیش از ۱۲۸ درصد بهبود یافت و به حدود ۲۷۸ بارر رسید و این در حالی بود که گزینش پذیری‌های CO2/CH4 و CO2/N2 نیز به ترتیب ۱۷۵ و ۱۸۳ درصد بهبود پیدا کردند. دلیل اصلی این بهبود، حضور اتم­های آهن، نیکل و روی در نانوذره­ی به­کار گرفته شده بود که موجب ایجاد برهمکنش بهتر غشای ساخته­شده با گاز CO2 گردید. همچنین به­دلیل وجود بخش­های CO2 دوست در ساختار پلیمر پباکس، تراوایی CO2 در مقایسه با گازهای N2 و CH4، بسیار بیشتر می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation of mixed matrix membranes containing nickel iron oxide nanoparticles for separation of carbon dioxide, nitrogen and methane

نویسندگان English

Saeed Kalantari 1
Mohammadreza Omidkhah 1
Abtin Ebadi Amooghin 2
1 Faculty of Chemical Engineering, Tarbiat Modares University
2 Arak University
چکیده English

Research subject: In recent years, researchers have proposed various methods for gas separation because of rising greenhouse gases in the atmosphere and causing enormous environmental problems. One of the newest and emerging methods is membrane gas separation. In the last decade, mixed matrix membranes (MMMs) have received much attention due to their ability to successful separation of polar gases from mixtures.

Research approach: In this study, a novel two-component mixed matrix membrane was prepared by incorporating the nickel zinc iron oxide nanoparticles into the Pebox polymer matrix. This is owing to combination the unique features of Pebax copolymer such as high mechanical strength and gas permeability, with nanoparticle properties as considerable permeability and selectivity, and appropriate mechanical and thermal stability. The gas permeability test was performed for pristine membrane and MMMs at 35 °C and pressure range from 2 to 10 bar. Fabricated membranes were also evaluated by FESEM, FTIR-ATR, DSC and XRD tests

Main results: Results demonstrated that in the case of the optimum membrane with 1 wt.% of filler loading and at 10 bar, the CO2 permeability was increased about 128% and reached to 278 Barrer, compared to pristine membrane. However, the CO2/CH4 and CO2/N2 selectivities were improved by 175 and 183 percent, respectively. This superior results was due to the presence of iron, nickel, and zinc atoms in the filler structure, which resulted in a better interaction with CO2. On the other hand, the presence of CO2-friendly segments in the Pebax structure caused much higher CO2 permeability in comparison with other light gases.

کلیدواژه‌ها English

mixed matrix membrane
gas separation
Nickel zinc iron oxide
[1] S. Mashhadikhan, A. Moghadassi, A.E. Amooghin, H. Sanaeepur, Interlocking The Synthesized Polymer and Bifunctional Filler Containing the Same Polymer’s Monomer for Conformable Hybrid Membrane System, Journal of Materials Chemistry A, 8 (2020) 3942-3955.
[2] H. Sanaeepur, A.E. badi Amooghin, A. Moghadassi, A. Kargari, S. Moradi, D. Ghanbari, A Novel Acrylonitrile–Butadiene–Styrene/Poly (Ethylene Glycol) Membrane: Preparation, Characterization, and Gas Permeation Study, Polymers for Advanced Technologies, 23 (2012) 1207-1218.
[3] A.E. Amooghin, M.M. Moftakhari Sharifzadeh, M. Zamani Pedram, Rigorous Modeling of Gas Permeation Behavior in Facilitated Transport Membranes (FTMs); Evaluation of Carrier Saturation Effects and Double-Reaction Mechanism, Greenhouse Gases: Science and Technology, 8 (2018) 429-443.
[4] C.T.Q. Dang, Design, and Optimization Of low Salinity Waterflooding, in, University of Calgary, 2015.
[5] S. Sridhar, R. Veerapur, M. Patil, K. Gudasi, T. Aminabhavi, Matrimid Polyimide Membranes for the Separation of Carbon Dioxide from Methane, Journal of Applied Polymer Science, 106 (2007) 1585-1594.
[6] R.W. Baker, Membrane Technology and Applications. 2004, England: John Wiley and Sons, (2007).
[7] E. Adatoz, A.K. Avci, S. Keskin, Opportunities and Challenges of MOF-Based Membranes in Gas Separations, Separation and Purification Technology, 152 (2015) 207-237.
[8] C.-C. Hu, P.-H. Cheng, S.-C. Chou, C.-L. Lai, S.-H. Huang, H.-A. Tsai, W.-S. Hung, K.-R. Lee, Separation Behavior of Amorphous Amino-Modified Silica Nanoparticle/Polyimide Mixed Matrix Membranes for Gas Separation, Journal of Membrane Science, 595 (2020) 117542.
[9] Z.V. Singh, M.G. Cowan, W.M. McDanel, Y. Luo, R. Zhou, D.L. Gin, R.D. Noble, Determination and Optimization of Factors Affecting CO2/CH4 Separation Performance in Poly (Ionic Liquid)-Ionic Liquid-Zeolite Mixed-Matrix Membranes, Journal of Membrane Science, 509 (2016) 149-155.
[10] Z. Wang, D. Wang, S. Zhang, L. Hu, J. Jin, Interfacial Design of Mixed Matrix Membranes for Improved Gas Separation Performance, Advanced Materials, 28 (2016) 3399-3405.
[11] X.-H. Ma, S.-Y. Yang, Polyimide Gas Separation Membranes, in: Advanced Polyimide Materials, Elsevier, 2018, pp. 257-322.
[12] H. Sanaeepur, A.E. Amooghin, S. Bandehali, A. Moghadassi, T. Matsuura, B. Van der Bruggen, Polyimides In Membrane Gas Separation: Monomer’s Molecular Design and Structural Engineering, Progress in Polymer Science, 91 (2019) 80-125.
[13] A.E. Amooghin, M. Omidkhah, H. Sanaeepur, A. Kargari, Preparation and Characterization of Ag+ Ion-Exchanged Zeolite-Matrimid® 5218 Mixed Matrix Membrane for CO2/CH4 Separation, Journal of Energy Chemistry, 25 (2016) 450-462.
[14] A.E. Amooghin, M. Omidkhah, A. Kargari, The Effects of Aminosilane Grafting on NaY Zeolite–Matrimid® 5218 Mixed Matrix Membranes For CO2/CH4 Separation, Journal of Membrane Science, 490 (2015) 364-379.
[15] H. Sanaeepur, R. Ahmadi, A.E. Amooghin, D. Ghanbari, A Novel Ternary Mixed Matrix Membrane Containing Glycerol-Modified Poly (Ether-Block-Amide)(Pebax 1657)/Copper Nanoparticles for CO2 Separation, Journal of Membrane Science, 573 (2019) 234-246.
[16] N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of A PEBAX-1074/Zno Nanocomposite Membrane with Improved CO2 Separation Performance, Journal of Energy Chemistry, 26 (2017) 454-465.
[17] T. Khosravi, M. Omidkhah, Preparation of CO2 Selective Composite Membranes Using Pebax/Cubtc/PEG-Ran-PPG Ternary System, Journal of Energy Chemistry, 26 (2017) 530-539.
[18] A. Jomekian, R.M. Behbahani, T. Mohammadi, A. Kargari, CO2/CH4 Separation by High Performance Co-Casted ZIF-8/Pebax 1657/PES Mixed Matrix Membrane, Journal of Natural Gas Science and Engineering, 31 (2016) 562-574.
[19] P.A. Gamali, A. Kazemi, R. Zadmard, M.J. Anjareghi, A. Rezakhani, R. Rahighi, M. Madani, Distinguished Discriminatory Separation Of CO2 from Its Methane-Containing Gas Mixture via PEBAX Mixed Matrix Membrane, Chinese Journal of Chemical Engineering, 26 (2018) 73-80.
[20] M. Rezakazemi, A.E. Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, State-of-the-Art Membrane Based CO2 Separation Using Mixed Matrix Membranes (MMMs): An Overview On Current Status and Future Directions, Progress in Polymer Science, 39 (2014) 817-861.
[21] A.E. Amooghin, S. Mashhadikhan, H. Sanaeepur, A. Moghadassi, T. Matsuura, S. Ramakrishna, Substantial Breakthroughs on Function-Led Design of Advanced Materials Used in Mixed Matrix Membranes (Mmms): A New Horizon for Efficient CO2 Separation, Progress In Materials Science, 102 (2019) 222-295.
[22] R.W. Baker, Future Directions Of Membrane Gas Separation Technology, Industrial & Engineering Chemistry Research, 41 (2002) 1393-1411.
[23] R. Mahajan, D.Q. Vu, W.J. Koros, Mixed Matrix Membrane Materials: an Answer to the Challenges Faced by Membrane Based Gas Separations Today, Journal of the Chinese Institute of Chemical Engineers, 33 (2002) 77-86.
[24] T. Li, Y. Pan, K.-V. Peinemann, Z. Lai, Carbon Dioxide Selective Mixed Matrix Composite Membrane Containing ZIF-7 Nano-Fillers, Journal of Membrane Science, 425 (2013) 235-242.
[25] D. Zhao, J. Ren, H. Li, K. Hua, M. Deng, Poly (Amide-6-B-Ethylene Oxide)/SAPO-34 Mixed Matrix Membrane for CO2 Separation, Journal of Energy Chemistry, 23 (2014) 227-234.
[26] S. Hosseini, S. Madaeni, A. Heidari, A. Amirimehr, Preparation And Characterization of Ion-Selective Polyvinyl Chloride Based Heterogeneous Cation Exchange Membrane Modified by Magnetic Iron–Nickel Oxide Nanoparticles, Desalination, 284 (2012) 191-199.
[27] E. Ahmadpour, M.V. Sarfaraz, R.M. Behbahani, A.A. Shamsabadi, M. Aghajani, Fabrication Of Mixed Matrix Membranes Containing TiO2 Nanoparticles in Pebax 1657 as A Copolymer on an Ultra-Porous PVC Support, Journal of Natural Gas Science and Engineering, 35 (2016) 33-41.
[28] Z. Dai, V. Løining, J. Deng, L. Ansaloni, L. Deng, Poly (1-Trimethylsilyl-1-Propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity On CO2 Permeation, Membranes, 8 (2018) 76.
[29] E. Ghasemi Estahbanati, M. Omidkhah, A.E. Amooghin, Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF4] for Improved CO2 Separation Performance, ACS Applied Materials & Interfaces, 9 (2017) 10094-10105.
[30] H. Rabiee, A. Ghadimi, T. Mohammadi, Gas Transport Properties of Reverse-Selective Poly (Ether-B-Amide6)/[Emim][BF4] Gel Membranes for CO2/Light Gases Separation, Journal of Membrane Science, 476 (2015) 286-302.
[31] K. Velmurugan, V.S.K. Venkatachalapathy, S. Sendhilnathan, Synthesis Of Nickel Zinc Iron Nanoparticles by Coprecipitation Technique, Materials Research, 13 (2010) 299-303.
[32] T.-I. Yang, R.N. Brown, L.C. Kempel, P. Kofinas, Surfactant-Modified Nickel Zinc Iron Oxide/Polymer Nanocomposites for Radio Frequency Applications, Journal of Nanoparticle Research, 12 (2010) 2967-2978.
[33] K.R. Krishna, K.V. Kumar, D. Ravinder, Structural And Electrical Conductivity Studies in Nickel-Zinc Ferrite, Advances in Materials physics and Chemistry, 2 (2012) 185.
[34] H. Rabiee, S.M. Alsadat, M. Soltanieh, S.A. Mousavi, A. Ghadimi, Gas Permeation and Sorption Properties of Poly (Amide-12-B-Ethyleneoxide)(Pebax1074)/SAPO-34 Mixed Matrix Membrane for CO2/CH4 And CO2/N2 Separation, Journal of Industrial and Engineering Chemistry, 27 (2015) 223-239.
[35] J. Shen, G. Liu, K. Huang, Q. Li, K. Guan, Y. Li, W. Jin, Uio-66-Polyether Block Amide Mixed Matrix Membranes for CO2 Separation, Journal of Membrane Science, 513 (2016) 155-165.
[36] L. Xiang, Y. Pan, G. Zeng, J. Jiang, J. Chen, C. Wang, Preparation of Poly (Ether-Block-Amide)/Attapulgite Mixed Matrix Membranes for CO2/N2 Separation, Journal of Membrane Science, 500 (2016) 66-75.
[37] E.G. Estahbanati, M. Omidkhah, A.E. Amooghin, Preparation and Characterization of Novel Ionic Liquid/Pebax Membranes for Efficient CO2/Light Gases Separation, Journal of Industrial and Engineering Chemistry, 51 (2017) 77-89.
[38] E. Nezhadmoghadam, M.P. Chenar, M. Omidkhah, A. Nezhadmoghadam, R. Abedini, Aminosilane Grafted Matrimid 5218/Nano-Silica Mixed Matrix Membrane for CO2/Light Gases Separation, Korean Journal of Chemical Engineering, 35 (2018) 526-534.
[39] M.H. Jazebizadeh, S. Khazraei, Investigation Of Methane and Carbon Dioxide Gases Permeability Through PEBAX/PEG/Zno Nanoparticle Mixed Matrix Membrane, Silicon, 9 (2017) 775-784.
[40] A.E. Amooghin, H. Sanaeepur, M. Omidkhah, A. Kargari, “Ship-in-a-Bottle”, a New Synthesis Strategy for Preparing Novel Hybrid Host–Guest Nanocomposites for Highly Selective Membrane Gas Separation, Journal of Materials Chemistry A, 6 (2018) 1751-1771.
[41] M.H. Nematollahi, A.H.S. Dehaghani, R. Abedini, CO2/CH4 Separation With Poly (4-Methyl-1-Pentyne)(TPX) Based Mixed Matrix Membrane Filled with Al2O3 Nanoparticles, Korean Journal of Chemical Engineering, 33 (2016) 657-665.
[4۲] T.T. Moore, W.J. Koros, Non-Ideal Effects In Organic–Inorganic Materials for Gas Separation Membranes, Journal of Molecular Structure, 739 (2005) 87-98.
[43] A. Mahmoudi, M. Asghari, V. Zargar, CO2/CH4 Separation Through a Novel Commercializable Three-Phase PEBA/PEG/NaX Nanocomposite Membrane, Journal of Industrial and Engineering Chemistry, 23 (2015) 238-242.
[44] S. Wang, Y. Liu, S. Huang, H. Wu, Y. Li, Z. Tian, Z. Jiang, Pebax–PEG–MWCNT Hybrid Membranes with Enhanced CO2 Capture Properties, Journal of Membrane Science, 460 (2014) 62-70.
[45] N. Azizi, T. Mohammadi, R.M. Behbahani, Synthesis of a New Nanocomposite Membrane (PEBAX-1074/PEG-400/TiO2) in Order to Separate CO2 from CH4, Journal of Natural Gas Science and Engineering, 37 (2017) 39-51.
[46] R.S. Murali, S. Sridhar, T. Sankarshana, Y. Ravikumar, Gas Permeation Behavior of Pebax-1657 Nanocomposite Membrane Incorporated with Multiwalled Carbon Nanotubes, Industrial & Engineering Chemistry Research, 49 (2010) 6530-6538.
[47] B. Yu, H. Cong, Z. Li, J. Tang, X.S. Zhao, Pebax-1657 Nanocomposite Membranes Incorporated with Nanoparticles/Colloids/Carbon Nanotubes for CO2/N2 and CO2/H2 Separation, Journal of Applied Polymer Science, 130 (2013) 2867-2876.
[48] N. Bryan, E. Lasseuguette, M. van Dalen, N. Permogorov, A. Amieiro, S. Brandani, M.C. Ferrari, Development of Mixed Matrix Membranes Containing Zeolites for Post-Combustion Carbon Capture, Energy Procedia, 63 (2014) 160-166.
[49] H. Wu, X. Li, Y. Li, S. Wang, R. Guo, Z. Jiang, C. Wu, Q. Xin, X. Lu, Facilitated Transport Mixed Matrix Membranes Incorporated with Amine Functionalized MCM-41 for Enhanced Gas Separation Properties, Journal of Membrane Science, 465 (2014) 78-90.
[50] R. Zoppi, S. Das Neves, S. Nunes, Hybrid Films of Poly (Ethylene Oxide-B-Amide-6) Containing Sol–Gel Silicon or Titanium Oxide as Inorganic Fillers: Effect of Morphology and Mechanical Properties on Gas Permeability, Polymer, 41 (2000) 5461-5470.