مدلسازی جایگزینی دی اکسید کربن در ساختار هیدرات گازی متان

نوع مقاله : پژوهشی اصیل

نویسندگان

دانشگاه صنعت نفت

چکیده
در این تحقیق، یک مدل سینتیکی جدید برای پدیده جایگزینی متان-کربن دی­اکسید در ساختار هیدرات­های گازی پیشنهاد شده است. جایگزینی متان-کربن دی­اکسید روشی پیشنهادی برای تولید از مخازن هیدرات متان است که در نتیجه آن تولید متان و ذخیره کربن دی­اکسید به صورت همزمان اتفاق می­افتد. این مدل بر اساس مکانیسم پیشنهادی برای پدیده جایگزینی در یک فاز دوغابی از هیدرات متان ارائه شده است. براساس این مدل، تجزیه هیدرات متان و تشکیل هیدرات کربن دی­اکسید به صورت همزمان اتفاق می­افتد. بنابراین پارمترهای سینتیکی تشکیل هیدرات کربن دی­اکسید و تجزیه هیدرات متان به صورت آزمایشگاهی محاسبه شده و به صورت توابعی از دما و فشار برازش شده­اند. بررسی اثر شرایط عملیاتی برروی بازده جایگزینی نشان می­دهد که بازده جایگزینی در فشارهای پایین­تر و دماهای بالاتر بیشتر می­باشد. این رفتار نشان می­دهد که مکانیسم کنترل کننده سرعت برای پدیده جایگزینی در ساختار هیدرات، تجزیه هیدرات متان است، زیرا سرعت تجزیه هیدرات در دماهای بالاتر و فشارهای پایین­تر بیشتر می­باشد. بر اساس نتایج حاصل از این مدل در دمای 15/278 درجه کلوین با افزایش فشار از 55 بار تا 65 بار، بازده جایگزینی 78/15 تا 80/8 کاهش پیداکرده است. همچنین در دمای 15/280 در جه کلوین با افزایش فشار از 60 با تا 70 بار بازده جایگزینی از 89/26 تا 91/15 کاهش یافته است. در فشار یکسان 60 بار بازه جایگزینی در دماهای 15/280 کلوین و 15/278 کلوین به ترتیب 96/20 و 59/11 می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling of Carbon Dioxide Replacement in Methane Hydrate Structure

نویسندگان English

Vahid Mohebbi
Vafa Feizi
Petroleum University of Technology
چکیده English

Research subject:
Methane hydrate reservoirs as an unconventional resource of natural gas can secure demand of energy in the world for many years. Efficient production prom this resources is the subject of concern. CO2-Methane replacement is a novel method for production from naturally occurring methane hydrate deposits such that methane production and CO2 storage take occur simultaneously.

Research approach: In this study a new kinetic model is proposed for CO2-Methane replacement in hydrate structure. This kinetic model is developed based on the mechanism proposed for replacement in the hydrate structure in the presence of excess water in a slurry phase of methane hydrate. According to this mechanism partial breakage of methane hydrate cages, methane-CO2 substitution and formation of CO2 hydrate proceed simultaneously. Methane hydrate dissociation and CO2 hydrate formation kinetic parameters are evaluated experimentally and fitted on polynomials as function of pressure and temperature.

Main results: Evaluation of the effects of pressure and temperature on the replacement efficiency show that higher replacement efficiency is obtained at higher temperatures and lower pressures. It means that replacement kinetic is controlled by methane hydrate dissociation step. Since, higher temperature and lower pressure favor dissociation of methane hydrate. At 278.15 K the replacement efficiency decreased from 15.78 to 8.80 as total pressure increased from 55 bar to 65 bar, at 280.15 K it decreased from 26.98 to 15.91 by decreasing total pressure from 60 bar to 70 bar. At same pressure 60 bar for 280.15 K and 278.15 K the replacement efficiency is 20.96 and 11.59 respectively.

کلیدواژه‌ها English

Gas Hydrate
Methane
Carbon Dioxide
Replacement
Modeling
[1] Makogon, Y.F., Holditch, S.A. and Makogon, T.Y., Natural gas-hydrates—A Potential Energy Source for the 21st Century, Journal of petroleum science and engineering, 56(1-3), 14-31, 2007.
[2] Xu, C.G. and Li, X.S., Research Progress on Methane Production From Natural Gas Hydrates, RSC Advances, 5(67), 54672-54699, 2015.
[3] Ji, C., Ahmadi, G. and Smith, D.H., Natural Gas Production From Hydrate Decomposition by Depressurization, Chemical Engineering Science, 56(20), 5801-5814, 2001.
[4] Haligva, C., Linga, P., Ripmeester, J.A. and Englezos, P., Recovery of Methane From a Variable-volume Bed of Silica Sand/Hydrate by Depressurization, Energy & Fuels, 24(5), 2947-2955, 2010.
[5] Li, X.S., Zhang, Y., Li, G., Chen, Z.Y. and Wu, H.J., Experimental Investigation into the Production Behavior of Methane Hydrate in Porous Sediment by Depressurization with a Novel Three-dimensional Cubic Hydrate Simulator, Energy & Fuels, 25(10), 4497-4505, 2011.
[6] Gao, Y., Yang, M., Zheng, J.N. and Chen, B., Production Characteristics of Two Class Water-excess Methane Hydrate Deposits During Depressurization, Fuel, 232, 99-107, 2018.
[7] Zhan, L., Wang, Y. and Li, X.S., Experimental Study on Characteristics of Methane Hydrate Formation and Dissociation in Porous Medium with Different Particle Sizes Using Depressurization, Fuel, 230, 37-44, 2018.
[8] Wang, Y., Feng, J.C. and Li, X.S., Pilot-scale Experimental Test on Gas Production From Methane Hydrate Decomposition Using Depressurization Assisted with Heat Stimulation Below Quadruple Point, International Journal of Heat and Mass Transfer, 131, 965-972, 2019.
[9] Misyura, S.Y., Effect of Heat Transfer on the Kinetics of Methane Hydrate Dissociation, Chemical Physics Letters, 583, 34-37, 2013.
[10] Fitzgerald, G.C. and Castaldi, M.J., Thermal Stimulation Based Methane Production From Hydrate Bearing Quartz Sediment, Industrial & Engineering Chemistry Research, 52(19), 6571-6581, 2013.
[11] Fan, S., Zhang, Y., Tian, G., Liang, D. and Li, D., Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol, Energy & fuels, 20(1), 324-326, 2006.
[12] Yuan, Q., Sun, C.Y., Yang, X., Ma, P.C., Ma, Z.W., Li, Q.P. and Chen, G.J., Gas Production From Methane-Hydrate-Bearing Sands by Ethylene Glycol Injection Using a Three-dimensional Reactor, Energy & Fuels, 25(7), 3108-3115, 2011.
[13] Adisasmito, S., Frank III, R.J. and Sloan Jr, E.D., Hydrates of Carbon Dioxide and Methane Mixtures, Journal of Chemical and Engineering Data, 36(1), 68-71, 1991.
[14] Koh, D.Y., Kang, H., Lee, J.W., Park, Y., Kim, S.J., Lee, J., Lee, J.Y. and Lee, H., Energy-efficient natural gas hydrate production using gas exchange, Applied Energy, 162, 114-130, 2016.
[15] Ohgaki, K., Takano, K., Sangawa, H., Matsubara, T. and Nakano, S., Methane Exploitation by Carbon Dioxide from Gas Hydrates—Phase Equilibria for CO2-CH4 Mixed Hydrate System—, Journal of chemical engineering of Japan, 29(3), 478-483, 1996.
[16] Dholabhai, P.D. and Bishnoi, P.R., Hydrate Equilibrium Conditions in Aqueous Electrolyte Solutions: Mixtures of Methane and Carbon Dioxide. Journal of Chemical and Engineering Data, 39(1), 191-194, 1994.
[17] Seo, Y.T., Lee, H. and Yoon, J.H., Hydrate Phase Equilibria of the Carbon Dioxide, Methane, and Water System. Journal of Chemical & Engineering Data, 46(2), 381-384, 2001.
[18] Zhou, X., Fan, S., Liang, D. and Du, J., Determination of Appropriate Condition on Replacing Methane From Hydrate with Carbon Dioxide, Energy Conversion and Management, 49(8), 2124-2129, 2008.
[19] Smith, D.H., Seshadri, K. and Wilder, J.W., Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media, in First National Conference on Carbon Sequestration. 2001.
[20] Yezdimer, E.M., Cummings, P.T. and Chialvo, A.A., Determination of the Gibbs Free Energy of Gas replacement in SI Clathrate Hydrates by Molecular Simulation, The Journal of Physical Chemistry A, 106(34), 7982-7987, 2002.
[21] Park, Y., Kim, D.Y., Lee, J.W., Huh, D.G., Park, K.P., Lee, J. and Lee, H., Sequestering Carbon Dioxide into Complex Structures of Naturally Occurring Gas Hydrates, Proceedings of the National Academy of Sciences, 103(34), 12690-12694, 2006.
[22] Shin, K., Park, Y., Cha, M., Park, K.P., Huh, D.G., Lee, J., Kim, S.J. and Lee, H., Swapping phenomena occurring in deep-sea gas hydrates, Energy & Fuels, 22(5), 3160-3163, 2008.
[23] Seo, Y., Lee, S. and Lee, J., Experimental Verification of Methane Replacement in Gas Hydrates by Carbon Dioxide, Chemical Engineering Transactions, 32, 163-168, 2013.
[24] Yuan, Q., Sun, C.Y., Liu, B., Wang, X., Ma, Z.W., Ma, Q.L., Yang, L.Y., Chen, G.J., Li, Q.P., Li, S. and Zhang, K., Methane Recovery From Natural Gas Hydrate in Porous Sediment Using Pressurized Liquid CO2, Energy Conversion and Management, 67, 257-264, 2013.
[25] Zhou, X., Fan, S., Liang, D. and Du, J., Replacement of Methane From Quartz Sand-bearing Hydrate with Carbon Dioxide-in-Water Emulsion, Energy & Fuels, 22(3), 1759-1764, 2008.
[26] Yuan, Q., Wang, X.H., Dandekar, A., Sun, C.Y., Li, Q.P., Ma, Z.W., Liu, B. and Chen, G.J., Replacement of Methane from Hydrates in Porous Sediments with CO2-in-Water Emulsions. Industrial & Engineering Chemistry Research, 53(31), 12476-12484, 2014.
[27] Skovborg, P. and Rasmussen, P., A Mass Transport Limited Model for the Growth of Methane and Ethane Gas Hydrates, Chemical Engineering Science, 49(8), 1131-1143, 1994.
[28] Mohebbi, V., Behbahani, R.M. and Naderifar, A., A New Approach for Modeling of Multicomponent Gas Hydrate Formation, Korean Journal of Chemical Engineering, 34(3), 706-716, 2017.
[29] Svandal, A. and Kvamme, B., Modeling the dissociation of carbon dioxide and methane hydrate using the phase field theory, Journal of mathematical chemistry, 46(3), 763-769, 2009.
[30] Chen, G.J. and Guo, T.M., Thermodynamic Modeling of Hydrate Formation Based on New Concepts, Fluid Phase Equilibria, 122(1-2), pp.43-65, 1996.
[31] Chen, G.J. and Guo, T.M., A New Approach to Gas Hydrate Modelling, Chemical Engineering Journal, 71(2), 145-151, 1998.
[32] Ota, M., Abe, Y., Watanabe, M., Smith Jr, R.L. and Inomata, H., Methane Recovery From Methane Hydrate Using Pressurized CO2, Fluid Phase Equilibria, 228, 553-559, 2005.
[33] Ota, M., Morohashi, K., Abe, Y., Watanabe, M., Smith Jr, R.L. and Inomata, H., Replacement of CH4 in the Hydrate by Use of Liquid CO2, Energy Conversion and Management, 46(11-12), 1680-1691, 2005.
[34] Li, Z., Guo, X., Yang, L. and Ma, X., Exploitation of Methane in the Hydrate by Use of Carbon Dioxide in the Presence of Sodium Chloride, Petroleum Science, 6(4), 426-432, 2009.
[35] Lee, S., Lee, Y., Lee, J., Lee, H. and Seo, Y., Experimental Verification of Methane–Carbon Dioxide Replacement in Natural Gas Hydrates Using a Differential Scanning Calorimeter, Environmental science & technology, 47(22), 13184-13190, 2013.
[36] Wu, G., Tian, L., Chen, D., Niu, M. and Ji, H., CO2 and CH4 Hydrates: Replacement or Co-growth?, The Journal of Physical Chemistry C, 123(22), 13401-13409, 2019.
[37] Xu, C.G., Cai, J., Yu, Y.S., Chen, Z.Y. and Li, X.S., Research on Micro-Mechanism and Efficiency of CH4 Exploitation via CH4-CO2 Replacement From Natural Gas Hydrates, Fuel, 216, 255-265, 2018.
[38] Ersland, G., Husebø, J., Graue, A., Baldwin, B.A., Howard, J. and Stevens, J., Measuring Gas Hydrate Formation and Exchange with CO2 in Bentheim Sandstone Using MRI Tomography. Chemical Engineering Journal, 158(1), 25-31, 2010.