بررسی ریزساختار، ریخت‌شناسی و خواص کششی الیاف نانو کامپوزیت پلی‌پروپیلن/نانو صفحات گرافن در حضور سازگارکننده

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه پژوهشی نساجی و چرم، پژوهشکده شیمی و پتروشیمی، پژوهشگاه استاندارد

2 دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر

3 دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده
در سالهای اخیر، استفاده از نانو صفحات گرافن (GnPs) در تهیه نانو کامپوزیت‌های پلیمری بسیار مورد توجه قرار گرفته است. چگونگی پخش GnPs در ماتریس پلیمری از اهمیت به‌سزایی برخوردار است به‌نحوی که می‌تواند بر ریزساختار و خواص نهایی نانو کامپوزیت تاثیرگذار باشد. بر این اساس، در این پژوهش تاثیر استفاده از سازگارکننده بر نحوه پخش GnPs و نیز شکل‌گیری ساختار داخلی، آرایش‌یافتگی و خواص کششی الیاف نانو کامپوزیت پلی‌پروپیلن (PP) حاوی GnPs مورد بررسی قرار می‌گیرد.

الیاف نانو کامپوزیت PP/GnPs حاوی %1/0 و %5/0 GnPs با و بدون سازگارکننده پلی‌پروپیلن گرافت شده با مالئیک انیدرید (PP-g-MA) به روش ذوب‌ریسی تهیه شدند. نحوه پخش GnPs و مکان قرارگیری آنها در درون الیاف با استفاده از میکروسکوپ الکترونی عبوری (TEM) و پراش اشعه ایکس با زاویه باریک (SAXS) بررسی شدند. همچنین آرایش‌یافتگی و بلورینگی الیاف به‌ترتیب با استفاده از طیف‌سنجی مادون قرمز پلاریزه (FTIR) و گرماسنج پویشی تفاضلی (DSC) مورد بررسی قرار گرفت. علاوه براین، به کمک تصاویر میکروسکوپ الکترونی پویشی (SEM) به‌دست آمده از سطح مقطع عرضی الیاف، چگونگی شکست در طی آزمون خواص کششی مورد بررسی قرار گرفت. با استفاده از مدل Halpin-Tsai نتایج آزمایشگاهی مدول کششی الیاف با مقادیر تئوری پیش‌بینی شده مقایسه شدند.

تصاویر TEM نشان می‌دهند که در الیاف نانو کامپوزیت حاوی سازگارکننده، میزان تجمعات GnPs کاهش یافته، اندازه تجمعات کوچک‌تر شده و پخش آنها بهبود یافته است. افزایش در طول ناحیه آمورف و بلوری (Lp) به‌دست آمده از آزمون SAXS نشان می‌دهد که در الیاف نانو کامپوزیت حاوی سازگارکننده، بخش اعظم GnPs در ناحیه درون فیبریلی قرار گرفته‌‌ا‌ند. براساس نتایج به‌دست آمده از آزمون FTIR پلاریزه و DSC، آرایش‌یافتگی و بلورینگی الیاف نانو کامپوزیت PP/G0.5 در حضور سازگارکننده به میزان قابل ملاحظه‌ای افزایش می‌یابد. همچنین اثر تقویت‌سازی GnPs در الیاف نانو کامپوزیت PP/MA/GnPs را می‌توان با پخش بهتر GnPs و تغییر ساختار داخلی الیاف تشریح نمود. علاوه بر این، حضور سازگارکننده در ساختار الیاف نانو کامپوزیت PP/GnPs، موجب تغییر رفتار شکست کششی الیاف از حالت انعطاف‌پذیر به حالت شکننده می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation on microstructure, morphology, and tensile properties of polypropylene/graphene nanoplatelets nanocomposite fiber in the presence of compatibilizer

نویسندگان English

Rouhollah Semnani Rahbar 1
BAHAREH KALANTARI 2
Mohammad Reza Mohaddes Mojtahedi 3
1 Department of Textile and Leather, Faculty of Chemistry and Petrochemical Engineering, Standard Research Institute (SRI), Karaj, P. O. Box 31745-139, Iran
2 Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
3 Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده English

Abstract

Research Subject: In recent years, the use of graphene nanoplatelets (GnPs) in polymer nanocomposites has attracted considerable attention. Dispersion state of GnPs in the polymer matrix has a great importance which can affect microstructure and final properties of nanocomposite. Therefore, in the present work, the effect of compatibilizer on the dispersion state of GnPs and also on internal structure, orientation, and tensile properties of polypropylene (PP)/GnPs nanocomposite fibers are investigated.

Research Approach: PP/GnPs nanocomposite fibers containing 0.1% and 0.5% GnPs with and without
maleic anhydride-grafted polypropylene (PP-g-MA) were melt spun. Dispersion state and location of GnPs in the nanocomposite fibers were investigated by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Fiber orientation and crystallinity were studied by polarized Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC), respectively. Moreover, fracture behaviour of PP/GnPs nanocomposite fibers was investigated by cross-sectional scanning electron microscopy (SEM) images of tensile fractured samples. Using Halpin-Tsai model, experimental tensile moduli of fibers were compared with the predicted values.

Main Results: TEM images show that in the compatibilized PP/MA/GnPs nanocomposite fibers, GnPs aggregates decrease and their size also reduces, suggesting that GnPs dispersion improved. An increase in Lp of the compatibilized sample recorded from SAXS analysis indicates that the more GnPs are located in the intrafibrillar region. Based on polarized FTIR and DSC results, orientation and crystallinity of PP/G0.5 nanocomposite fiber are found to significantly increase after inclusion of PP-g-MA. Moreover, reinforcing effect of GnPs in PP/MA/GnPs nanocomposite fibers could be explained by better GnPs dispersion and changes in internal structure of fiber. Furthermore, the tensile fracture behavior of PP/GnPs nanocomposite fiber changes from ductile to brittle in the presence of PP-g-MA.

کلیدواژه‌ها English

Polypropylene/graphene nanoplatelets nanocomposite fiber
compatibilizer
dispersion
Crystallinity
Orientation
[1] Paul D.R. and Robeson L.M., Polymer Nanotechnology: Nanocomposites, Polymer, 49: 3187-3204, 2008.
[2] Li B. and Zhong W-H., Review on Polymer/Graphite Nanoplatelet Nanocomposites, J. Mater. Sci., 46: 5595-5614, 2011.
[3] Li Y., Zhu J., Wei S., Ryu J., Wang Q., Sun L. and et al., Poly(propylene) Nanocomposites Containing Various Carbon Nanostructures, Macromol. Chem. Phys., 212: 2429-2438, 2011.
[4] Kim H., Abdala A.A. and Macosko C.W., Graphene/Polymer Nanocomposites, Macromolecules, 43: 6515-6530, 2010.
[5] Salzano de Luna M., Wang Y., Zhai T., Verdolotti L., Buonocore G.G., Lavorgna M. and et al., Nanocomposite Polymeric Materials with 3D Graphene-based Architectures: From Design Strategies to Tailored Properties and Potential Applications, Prog. Polym. Sci., 89: 213-249, 2019.
[6] Potts J.R., Dreyer D.R., Bielawski C.W. and Ruoff R.S., Graphene-based Polymer Nanocomposites, Polymer, 52: 5-25, 2011.
[7] Zhang K., Li G-H., Feng L-M., Wang N., Guo J., Sun K. and et al., Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly(l-lactide)/Multi-walled Carbon Nanotube Nanocomposites with Electrically Conductive Segregated Networks, J. Mater. Chem. C, 5: 9359-9369, 2017.
[8] Dashairya L., Rout M. and Saha P., Reduced Graphene Oxide-Coated Cotton as An Efficient Absorbent in Oil-Water Separation, Adv. Compos. Hybrid Mater., 1:135-148, 2018.
[9] Li Y., Zhou B., Zheng G., Liu X., Li T., Yan C. and et al., Continuously Prepared Highly Conductive and Stretchable SWNT/MWNT Synergistically Composited Electrospun Thermoplastic Polyurethane Yarns for Wearable Sensing, J. Mater. Chem. C, 6: 2258-2269, 2018.
[10] Shi G., Araby S., Gibson C.T., Meng Q., Zhu S. and Ma J., Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications, Adv. Func. Mater., 28: 1706705, 2018.
[11] Gonçalves C., Pinto A., Machado A.V., Moreira J., Gonçalves I.C. and Magalhães F., Biocompatible Reinforcement of Poly(Lactic acid) with Graphene Nanoplatelets, Polym. Compos., 39: 308-320, 2018.
[12] Behera K., Yadav M., Chiu F-C. and Rhee K.Y., Graphene Nanoplatelet-Reinforced Poly(vinylidene fluoride)/High Density Polyethylene Blend-Based Nanocomposites with Enhanced Thermal and Electrical Properties, Nanomaterials, 9: 361, 2019.
[13] Zaman I., Phan T.T., Kuan H-C., Meng Q., Bao La L.T., Luong L. and et al., Epoxy/Graphene Platelets Nanocomposites with Two Levels of Interface Strength, Polymer, 52: 1603-1611, 2011.
[14] Kim J., Cha J., Jun G.H., Yoo S.C., Ryu S. and Hong S.H., Fabrication of Graphene Nanoplatelet/Epoxy Nanocomposites for Lightweight and High-Strength Structural Applications, Part, Part. Sys. Charac., 35: 1700412, 2018.
[15] Patti A., Russo P., Acierno D. and Acierno S., The Effect of Filler Functionalization on Dispersion and Thermal Conductivity of Polypropylene/Multi wall Carbon Nanotubes Composites, Compos. Part B Eng., 94: 350-359, 2016.
[16] Jiang J., Liu X., Lian M., Pan Y., Chen Q., Liu H. and et al., Self-Reinforcing and Toughening Isotactic Polypropylene via Melt Sequential Injection Molding, Polym. Test., 67: 183-189, 2018.
[17] Bunsell A.R. (Ed.), Handbook of Properties of Textile and Technical Fibres, 2nd ed., Woodhead Publishing, 515-543, 2018.
[18] Cromer B.M., Scheel S., Luinstra G.A., Coughlin E.B. and Lesser A.J., In-Situ Polymerization of Isotactic Polypropylene-Nanographite Nanocomposites, Polymer, 80: 275-281, 2015.
[19] Hsu P-C. and Tsai I-S., Fabrication and Mechanical Properties of Low-Loading Graphene Nanosheets Encapsulated on the Surface of Graphene Nanosheets/Polypropylene Composites, Micro Nano Lett., 10: 439-342, 2015.
[20] Galindo B., Benedito A., Gimenez E. and Compañ V., Comparative Study Between the Microwave Heating Efficiency of Carbon Nanotubes Versus Multilayer Graphene in Polypropylene Nanocomposites, Compos. Part B Eng., 98: 330-338, 2016.
[21] Bafana A.P., Yan X., Wei X., Patel M., Guo Z., Wei S. and et al., Polypropylene Nanocomposites Reinforced with Low Weight Percent Graphene Nanoplatelets, Compos. Part B Eng., 109: 101-107, 2017.
[22] Jun Y-S., Um J.G., Jiang G., Lui G. and Yu A., Ultra-Large Sized Graphene Nano-Platelets (GnPs) Incorporated Polypropylene (PP)/GnPs Composites Engineered by Melt Compounding and Its Thermal, Mechanical, and Electrical Properties, Compos. Part B Eng., 133: 218-225, 2018.
[23] Ren Y., Zhang Y., Fang H., Ding T., Li J. and Bai S-L., Simultaneous Enhancement on Thermal and Mechanical Properties of Polypropylene Composites Filled with Graphite Platelets and Graphene Sheets, Compos. Part A Appl. Sci. Manuf., 112: 57-63, 2018.
[24] Mistretta M.C., Botta L., Vinci A.D., Ceraulo M. and La Mantia F.P., Photo-Oxidation of Polypropylene/Graphene Nanoplatelets Composites, Polym. Deg. Stab., 160: 34-43, 2019.
[25] Nilsson E., Oxfall H., Wandelt W., Rychwalski R. and Hagström B., Melt Spinning of Conductive Textile Fibers with Hybridized Graphite Nanoplatelets and Carbon Black Filler, J. Appl. Polym. Sci., 130: 2579-2587, 2013.
[26] Kalantari B., Mohaddes Mojtahedi M.R., Sharif F. and Semnani Rahbar R., Effect of Graphene Nanoplatelets Presence on the Morphology, Structure, and Thermal Properties of Polypropylene in Fiber Melt-Spinning Process, Polym. Compos., 36: 367-375, 2015.
[27] Kalantari B., Mohaddes Mojtahedi M.R., Sharif F. and Semnani Rahbar R., Flow-Induced Crystallization of Polypropylene in the Presence of Graphene Nanoplatelets and Relevant Mechanical Properties in Nanocompsoite Fibres, Compos. Part A Appl. Sci. Manuf., 76: 203-214, 2015.
]28[ سمنانی رهبر، روح‌اله؛ کلانتری، بهاره؛ محدث مجتهدی، محمدرضا؛ شریف، فرهاد، تاثیر جریان تطویلی بر شکل‌گیری و ظهور ساختار در الیاف نانو کامپوزیت پلی‌پروپیلن/نانو صفحات گرافن، مجله نانو مواد، 30(9): 91 تا 106، (1396).
[29] La Mantia F.P., Ceraulo M., Mistretta M.C. and Botta L., Effect of the Elongational Flow on Morphology and Properties of Polypropylene/Graphene Nanoplatelets Nanocomposites, Polym. Test., 71: 10-17, 2018.
[30] Brandrup J., and Immergut E.H., Polymer Handbook, 3rd ed., New York, Wiley Interscience, 2000.
[31] Duguay A.J., Kiziltas A., Nader J.W., Gardner D.J. and Dagher H.J., Impact Properties and Rheological Behavior of Exfoliated Graphite Nanoplatelet-Filled Impact Modified Polypropylene Nanocomposites, J. Nanopart. Res., 16: doi:10.1007/s11051-014-2307-4, 2014.
[32] Rabiej M. and Rabiej S., Modeling of Polymer Structure with the Use of SAXSDAT Computer Program, Solid State Phenom., 203-204:185-188, 2013.
[33] Hegde R.R., Spruiell J.E. and Bhat G.S., Investigation of the Morphology of Polypropylene − Nanoclay Nanocomposites, Polym. Int., 63: 1112-1121, 2014.
[34] Tabatabaei S.H., Carreau P.J. and Ajji A., Effect of Processing on the Crystalline Orientation, Morphology, and Mechanical Properties of Polypropylene Cast Films and Microporous Membrane Formation, Polymer, 50: 4228-4240, 2009.
[35] Sadeghi F., Ajji A. and Carreau P.J., Analysis of Row Nucleated Lamellar Morphology of Polypropylene Obtained from the Cast Film Process: Effect of Melt Rheology and Process Conditions, Polym. Eng. Sci., 47: 1170-1178, 2007.
[36] Hussain F., Hojjati M., Okamoto M. and Gorga R.E., Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview, J. Compos. Mater., 40: 1511-1575, 2006.
[37] Duguay A.J., Nader J.W., Kiziltas A., Gardner D.J. and Dagher H.J., Exfoliated Graphite Nanoplatelet-Filled Impact Modified Polypropylene Nanocomposites: Influence of Particle Diameter, Filler Loading, and Coupling Agent on the Mechanical Properties, Appl. Nanosci., 4: 279-291, 2014.
[38] Sheng N., Boyce M.C., Parks D.M., Rutledge G.C., Abes J.I. and Cohen R.E., Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle, Polymer, 45: 487-506, 2004.
[39] Greco A., Lionetto F. and Maffezzoli A., Orientation of Graphene Nanoplatelets in Thermosetting Matrices, IEEE T. Nanotechnol., 15: 877-883, 2016.
[40] Ahmad S.R., Xue C. and Young R.J., The Mechanisms of Reinforcement of Polypropylene by Graphene Nanoplatelets, Mater. Sci. Eng. B, 216: 2-9, 2017.
[41] Kalaitzidou K., Fukushima H., Miyagawa H. and Drzal L.T., Flexural and Tensile Moduli of Polypropylene Nanocomposites and Comparison of Experimental Data to Halpin-Tsai and Tandon-Weng Models, Polym. Eng. Sci., 47: 1796-1803, 2007.
[42] Liu H., Hou L., Peng W., Zhang Q. and Zhang X., Fabrication and Characterization of Polyamide 6-Functionalized Graphene Nanocomposite Fiber, J. Mater. Sci., 47: 8052-8060, 2012.
[43] Lee C., Wei X., Kysar J.W. and Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 321: 385-388, 2008.