1. Wexell, C.L., Ryberg, H., Andersson, W.S., Blomqvist, S., Colin, P., Van Bocxlaer, J., and Dahlén, G., Antimicrobial Effect of A Single Dose of Amoxicillin on The Oral Microbiota, International Journal of Oral and Maxillofacial Surgery, 46: 277. 2017
2. Tian, X., Fei, J., Pi, Z., Yang, C., and Luo, D., Synthesis and Characterization of Amoxicillin Nanostructures, Nanomedicine: Nanotechnology, Biology and Medicine, 1(4): 323-325. 2005
3. Nowee, S.M., Abbas, A., and Romagnoli, J.A., Antisolvent Crystallization: Model Identification, Experimental Validation and Dynamic Simulation Chemical Engineering Science, 63(22): 5457-5467. 2008
4. Lai, S.C., Lazenby, R.A., Kirkman, P.M., and Unwin, P.R., Nucleation, Aggregative Growth and Detachment of Metal Nanoparticles During Electrodeposition at Electrode Surfaces, Chemical Science, 6(2): 1126-1138. 2015
5. Toraji A, Hadizadeh M, and F, N., The Effect of Nanoformulation of Amoxicillin on its Antibacterial Activity Against Common Bacterial Strains Involved in Hospital-Acquired Infections Arak Medical University Journal 21(130): 11-20. 2018
6. Kulkarni, A.M. and Zukoski, C.F., Nanoparticle Crystal Nucleation: Influence of Solution Conditions, Langmuir, 18(8): 3090-3099. 2002
7. Junejo, Y., Güner, A., and Baykal, A., Synthesis and Characterization of Amoxicillin Derived Silver Nanoparticles: Its Catalytic Effect on Degradation of Some Pharmaceutical Antibiotics Applied Surface Science, 317: 914-922. 2014
8. McDonald, M., Bommarius, A., Rousseau, R., and Grover, M., Continuous Reactive Crystallization of Β-Lactam Antibiotics Catalyzed by Penicillin G Acylase. Part I: Model Development, Computers Chemical Engineering, 123: 331-343. 2019
9. Cuthbertson, A., Rodman, A., Diab, S., and Gerogiorgis, D., Dynamic Modelling and Optimisation of the Batch Enzymatic Synthesis of Amoxicillin, Processes, 7(6): 318. 2019
10. Güncüm, E., Bakırel, T., Anlaş, C., Ekici, H., and Işıklan, N., Novel Amoxicillin Nanoparticles Formulated as Sustained Release Delivery System for Poultry Use, Journal of veterinary pharmacology and therapeutics. 2018
11. Abdelghany, A., Meikhailb, M., and El-Banab, A., Characterization and Amoxicillin Release in Novel Chitosan/Poly (Vinyl Alcohol)/Sodium Alginate Tri-Polymer Matrices as Restorative-Spoiled Wound Dressings, Global Journal of Physics, 9(1): 821-831. 2019
12. TOKU-E. Amoxicillin Sodium Salt Product Data Sheet. https://www.toku-e.com/ConvertHtmlToPdf.axd?product=124 Available in: 01/13/2018.
13. Zheng, F., Wang, S., Wen, S., Shen, M., and Shi, X., Amoxicillin-Loaded Electrospun Nano-Hydroxyapatite/Poly (Lactic-Co-Glycolic Acid) Composite Nanofibers: Preparation, Characterization and Antibacterial Activity, Journal of Controlled Release, 1(172): 30-31. 2013
14. Zheng, F., Wang, S., Wen, S., Shen, M., Zhu, M., and Shi, X., Characterization and Antibacterial Activity of Amoxicillin-Loaded Electrospun Nano-Hydroxyapatite/Poly (Lactic-Co-Glycolic Acid) Composite Nanofibers, Biomaterials, 34(4): 1402-1412. 2013
15. Tavakoli, F., Nosrati, M., and Manteghian, M.,Determination of The Mechanism of Nucleation and Induction Time of Crystallization of Acetylsalicylic Acid (Aspirin) Nanoparticles in The Presence of Surfactants, Third Scientific Conference on Process Engineering (Oil, Gas Refining and Petrochemicals). Tehran, 2014
16. Kim, S.H., Ahn, S.H., and Hirai, T., Crystallization Kinetics and Nucleation Activity of Silica Nanoparticle-Filled Poly (Ethylene 2, 6-Naphthalate), Polymer, 44(19): 5625-5634. 2003
17. Kim, Y.-R., Lai, S.C., McKelvey, K., Zhang, G., Perry, D., Miller, T.S., and Unwin, P.R., Nucleation and Aggregative Growth of Palladium Nanoparticles on Carbon Electrodes: Experiment and Kinetic Model, The Journal of Physical Chemistry C, 119(30): 17389-17397. 2015