G.R. Mahdavinia, M.J. Zohuriaan-Mehr, A. Pourjavadi, Modified chitosan III, superabsorbency, salt- and pH-sensitivity of smart ampholytic hydrogels from chitosan-g-PAN, Polym. Adv. Technol. 15 (2004) 173–180. doi:10.1002/pat.408.
[2] E. Gil, S. Hudson, Stimuli-reponsive polymers and their bioconjugates, Prog. Polym. Sci. 29 (2004) 1173–1222. doi:10.1016/j.progpolymsci.2004.08.003.
[3] Ma. Baghban Salehi, D. Ehsani Sohi, M. Otadi, M. Abedi lengi, Superabsorbent Sulfonated Polyacrylamide/Aluminum Nitrate Hydrogel: Swelling, Mechanical, Thermal and Structural Properties, Iran J Polym Sci Technol. (2017). doi:10.22063/jipst.2017.1514.
[4] M. Sirousazar, M. Kokabi, Intelligent Nanocomposite Hydrogels, in: A. Tiwari, A.K. Mishra, H. Kobayashi, A.P.F. Turner (Eds.), Intell. Nanomater., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012: pp. 487–531. doi:10.1002/9781118311974.ch12.
[5] H. Zhang, X. Wang, H. Huang, B. Yang, C. Wang, H. Sun, Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery, Colloid Polym. Sci. 297 (2019) 821–830. doi:10.1007/s00396-019-04512-7.
[6] Z. Du, Y. Hu, X. Gu, M. Hu, C. Wang, Poly(acrylamide) microgel-reinforced poly(acrylamide)/hectorite nanocomposite hydrogels, Colloids Surf. Physicochem. Eng. Asp. 489 (2016) 1–8. doi:10.1016/j.colsurfa.2015.09.039.
[7] J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-Network Hydrogels with Extremely High Mechanical Strength, Adv. Mater. 15 (2003) 1155–1158. doi:10.1002/adma.200304907.
[8] Y. Okumura, K. Ito, The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links, (n.d.) 3.
[9] K. Haraguchi, T. Takehisa, S. Fan, Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly( N -isopropylacrylamide) and Clay, Macromolecules. 35 (2002) 10162–10171. doi:10.1021/ma021301r.
[10] K. Haraguchi, T. Takehisa, Nanocomposite Hydrogels: A Unique Organic-Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties, Adv Mater. (2002) 5.
[11] Y. Deng, J. Liu, J. Wang, L. Liu, W. Li, H. Tian, X. Zhang, Z. Xie, Y. Geng, F. Wang, Dithienocarbazole and Isoindigo based Amorphous Low Bandgap Conjugated Polymers for Efficient Polymer Solar Cells, Adv. Mater. 26 (2014) 471–476. doi:10.1002/adma.201303586.
[12] A.M. Dumitrescu, T. Slatineanu, A. Poiata, A.R. Iordan, C. Mihailescu, M.N. Palamaru, Advanced composite materials based on hydrogels and ferrites for potential biomedical applications, Colloids Surf. Physicochem. Eng. Asp. 455 (2014) 185–194. doi:10.1016/j.colsurfa.2014.04.055.
[13] H. Shin, B.D. Olsen, A. Khademhosseini, Gellan gum microgel-reinforced cell-laden gelatin hydrogels, J Mater Chem B. 2 (2014) 2508–2516. doi:10.1039/C3TB20984A.
[14] C. Zheng, Z. Huang, Microgel reinforced composite hydrogels with pH-responsive, self-healing properties, Colloids Surf. Physicochem. Eng. Asp. 468 (2015) 327–332. doi:10.1016/j.colsurfa.2014.12.060.
[15] I.M. Daniel, O. Ishai, Engineering mechanics of composite materials, 2nd ed, Oxford University Press, New York, 2006.
[16] A.K. Kaw, Mechanics of composite materials, 2nd ed, Taylor & Francis, Boca Raton, FL, 2006.
[17] E.Y. Robinson, ANALYSIS AND PERFORMANCE OF FIBER COMPOSITES Second Edition B.D. Agrawal and L.J. Broutman A Wiley-Interscience Publication John Wiley and Sons, Inc., New York 449 pages, hard cover, 1990., Mater. Manuf. Process. 8 (1993) 375–379. doi:10.1080/10426919308934840.
[18] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite hydrogels for biomedical applications: Nanocomposite Hydrogels, Biotechnol. Bioeng. 111 (2014) 441–453. doi:10.1002/bit.25160.
[19] E. Thostenson, C. Li, T. Chou, Nanocomposites in context, Compos. Sci. Technol. 65 (2005) 491–516. doi:10.1016/j.compscitech.2004.11.003.
[20] D.F. Argenta, T.C. dos Santos, A.M. Campos, T. Caon, Hydrogel Nanocomposite Systems, in: Nanocarriers Drug Deliv., Elsevier, 2019: pp. 81–131. doi:10.1016/B978-0-12-814033-8.00003-5.
[21] K. Haraguchi, Nanocomposite hydrogels, Curr. Opin. Solid State Mater. Sci. 11 (2007) 47–54. doi:10.1016/j.cossms.2008.05.001.
[22] A. Okada, A. Usuki, Twenty Years of Polymer-Clay Nanocomposites, Macromol. Mater. Eng. 291 (2006) 1449–1476. doi:10.1002/mame.200600260.
[23] A. Radosavljevic (Krkljes, J. Spasojević, J. Krstic, Z. Kačarević-Popović, Nanocomposite Hydrogels Obtained by Gamma Irradiation, in: 2018: pp. 1–23. doi:10.1007/978-3-319-76573-0_21-1.
[24] A. Hebeish, S. Sharaf, Novel nanocomposite hydrogel for wound dressing and other medical applications, RSC Adv. 5 (2015) 103036–103046. doi:10.1039/C5RA07076G.
[25] K. Xu, J. Wang, S. Xiang, Q. Chen, Y. Yue, X. Su, C. Song, P. Wang, Polyampholytes superabsorbent nanocomposites with excellent gel strength, Compos. Sci. Technol. 67 (2007) 3480–3486. doi:10.1016/j.compscitech.2007.02.009.
[26] M. Rahmat, P. Hubert, Carbon nanotube–polymer interactions in nanocomposites: A review, Compos. Sci. Technol. 72 (2011) 72–84. doi:10.1016/j.compscitech.2011.10.002.
[27] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28 (2003) 1539–1641. doi:10.1016/j.progpolymsci.2003.08.002.
[28] S. Yang, J. Wang, H. Tan, F. Zeng, C. Liu, Mechanically robust PEGDA–MSNs-OH nanocomposite hydrogel with hierarchical meso-macroporous structure for tissue engineering, Soft Matter. 8 (2012) 8981. doi:10.1039/c2sm25123j.
[29] S. Rafieian, H. Mirzadeh, H. Mahdavi, M.E. Masoumi, A review on nanocomposite hydrogels and their biomedical applications, Sci. Eng. Compos. Mater. 26 (2019) 154–174. doi:10.1515/secm-2017-0161.
[30] J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Graphene-based polymer nanocomposites, Polymer. 52 (2011) 5–25. doi:10.1016/j.polymer.2010.11.042.
[31] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater. 22 (2010) 3906–3924. doi:10.1002/adma.201001068.
[32] G. Sharma, B. Thakur, Mu. Naushad, A. Kumar, F.J. Stadler, S.M. Alfadul, G.T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environ. Chem. Lett. 16 (2018) 113–146. doi:10.1007/s10311-017-0671-x.
[33] C. Zareie, A.R. Bahramian, M.V. Sefti, M.B. Salehi, Network-gel strength relationship and performance improvement of polyacrylamide hydrogel using nano-silica; with regards to application in oil wells conditions, J. Mol. Liq. 278 (2019) 512–520. doi:10.1016/j.molliq.2019.01.089.
[34] C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering, ACS Nano. 7 (2013) 2891–2897. doi:10.1021/nn401196a.
[35] S. Mohammadi, M. Vafaie Sefti, M. Baghban Salehi, A. Mousavi Moghadam, S. Rajaee, H. Naderi, Hydrogel swelling properties: comparison between conventional and nanocomposite hydrogels for water shutoff treatment: Comparing Conventional hydrogels with Nanocomposite, Asia-Pac. J. Chem. Eng. 10 (2015) 743–753. doi:10.1002/apj.1912.
[36] S.J.V. Frankland, A. Caglar, D.W. Brenner, M. Griebel, Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces, Am. Chem. Soc. (2002) 3046–3048. doi:https://doi-org.ezp4.semantak.com/10.1021/jp015591+.
[37] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature. 446 (2007) 60–63. doi:10.1038/nature05545.
[38] J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets, Nature. 446 (2007) 60.
[39] S.K. Krishnan, E. Singh, P. Singh, M. Meyyappan, H.S. Nalwa, A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors, RSC Adv. 9 (2019) 8778–8881. doi:10.1039/C8RA09577A.
[40] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science. 321 (2008) 385–388. doi:10.1126/science.1157996.
[41] S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Phys. Rev. Lett. 100 (2008) 016602. doi:10.1103/PhysRevLett.100.016602.
[42] P. Avouris, F. Xia, Graphene applications in electronics and photonics, MRS Bull. 37 (2012) 1225–1234. doi:10.1557/mrs.2012.206.
[43] O. Czakkel, B. Berke, K. László, Effect of graphene-derivatives on the responsivity of PNIPAM-based thermosensitive nanocomposites – A review, Eur. Polym. J. 116 (2019) 106–116. doi:10.1016/j.eurpolymj.2019.04.004.
[44] S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon. 50 (2012) 3210–3228. doi:10.1016/j.carbon.2011.11.010.
[45] M.J. Fernández-Merino, L. Guardia, J.I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, J.M.D. Tascón, Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions, J. Phys. Chem. C. 114 (2010) 6426–6432. doi:10.1021/jp100603h.
[46] J. Du, P. Guo, S. Xu, C. Zhang, S. Feng, L. Cao, R. Wu, J. Wang, 21 - Organic/inorganic nanocomposite hydrogels, in: Y. Dong, R. Umer, A.K.-T. Lau (Eds.), Fill. Reinf. Adv. Nanocomposites, Woodhead Publishing, 2015: pp. 523–548. doi:10.1016/B978-0-08-100079-3.00021-1.
[47] F. Lamberti, S. Giulitti, M. Giomo, N. Elvassore, Biosensing with electroconductive biomimetic soft materials, J. Mater. Chem. B. 1 (2013) 5083–5091. doi:10.1039/C3TB20666A.
[48] A.A. Adewunmi, S. Ismail, A.S. Sultan, Carbon Nanotubes (CNTs) Nanocomposite Hydrogels Developed for Various Applications: A Critical Review, J. Inorg. Organomet. Polym. Mater. 26 (2016) 717–737. doi:10.1007/s10904-016-0379-6.
[49] Y. Samchenko, Z. Ulberg, O. Korotych, Multipurpose smart hydrogel systems, Adv. Colloid Interface Sci. 168 (2011) 247–262. doi:10.1016/j.cis.2011.06.005.
[50] Y. Huang, Y. Zheng, W. Song, Y. Ma, J. Wu, L. Fan, Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels, Compos. Part Appl. Sci. Manuf. 42 (2011) 1398–1405. doi:10.1016/j.compositesa.2011.06.003.
[51] S. Chatterjee, M.W. Lee, S.H. Woo, Adsorption of congo red by chitosan hydrogel beads impregnated with carbon nanotubes, Bioresour. Technol. 101 (2010) 1800–1806. doi:10.1016/j.biortech.2009.10.051.
[52] N. Jin, E.A. Morin, D.M. Henn, Y. Cao, J.W. Woodcock, S. Tang, W. He, B. Zhao, Agarose Hydrogels Embedded with pH-Responsive Diblock Copolymer Micelles for Triggered Release of Substances, Biomacromolecules. 14 (2013) 2713–2723. doi:10.1021/bm4005639.
[53] M.-T. Popescu, S. Mourtas, G. Pampalakis, S.G. Antimisiaris, C. Tsitsilianis, pH-Responsive Hydrogel/Liposome Soft Nanocomposites For Tuning Drug Release, Biomacromolecules. 12 (2011) 3023–3030. doi:10.1021/bm2006483.
[54] L. Goetz, M. Foston, A.P. Mathew, K. Oksman, A.J. Ragauskas, Poly(methyl vinyl ether- co -maleic acid)−Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers, Biomacromolecules. 11 (2010) 2660–2666. doi:10.1021/bm1006695.
[55] J.K. Carrow, A.K. Gaharwar, Bioinspired Polymeric Nanocomposites for Regenerative Medicine, Macromol. Chem. Phys. 216 (2015) 248–264. doi:10.1002/macp.201400427.
[56] S.H.M. Söntjens, D.L. Nettles, M.A. Carnahan, L.A. Setton, M.W. Grinstaff, Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair, Biomacromolecules. 7 (2006) 310–316. doi:10.1021/bm050663e.
[57] R. Conte, A. De Luise, A. Valentino, F. Di Cristo, O. Petillo, F. Riccitiello, A. Di Salle, A. Calarco, G. Peluso, Hydrogel Nanocomposite Systems, in: Nanocarriers Drug Deliv., Elsevier, 2019: pp. 319–349. doi:10.1016/B978-0-12-814033-8.00010-2.
[58] P. Schexnailder, G. Schmidt, Nanocomposite polymer hydrogels, Colloid Polym. Sci. 287 (2009) 1–11. doi:10.1007/s00396-008-1949-0.
[59] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite Hydrogels for Biomedical Applications, Biotechnol. Bioeng. 111 (2014) 13.
[60] T. Wang, Z. Dai, J. Kang, F. Fu, T. Zhang, S. Wang, A TiO 2 nanocomposite hydrogel for Hydroponic plants in efficient water improvement, Mater. Chem. Phys. 215 (2018) 242–250. doi:10.1016/j.matchemphys.2018.05.042.
[61] N.S. Satarkar, D. Biswal, J.Z. Hilt, Hydrogel nanocomposites: a review of applications as remote controlled biomaterials, Soft Matter. 6 (2010) 2364. doi:10.1039/b925218p.
[62] L. Goetz, M. Foston, A.P. Mathew, K. Oksman, A.J. Ragauskas, Poly(methyl vinyl ether-co-maleic acid)−Polyethylene Glycol Nanocomposites Cross-Linked In Situ with Cellulose Nanowhiskers, Biomacromolecules. 11 (2010) 2660–2666. doi:10.1021/bm1006695.
[63] A.K. Gaharwar, S.A. Dammu, J.M. Canter, C.-J. Wu, G. Schmidt, Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles, Biomacromolecules. 12 (2011) 1641–1650. doi:10.1021/bm200027z.
[64] I.-Y. Jeon, J.-B. Baek, Nanocomposites Derived from Polymers and Inorganic Nanoparticles, Materials. 3 (2010) 3654–3674. doi:10.3390/ma3063654.
[65] Y.-H. Yu, C.-C. Jen, H.-Y. Huang, P.-C. Wu, C.-C. Huang, J.-M. Yeh, Preparation and properties of heterocyclically conjugated poly(3-hexylthiophene)-clay nanocomposite materials, J. Appl. Polym. Sci. 91 (2004) 3438–3446. doi:10.1002/app.13457.
[66] A. Olad, A. Rashidzadeh, Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites, Prog. Org. Coat. 62 (2008) 293–298. doi:10.1016/j.porgcoat.2008.01.007.
[67] J. Loste, J.-M. Lopez-Cuesta, L. Billon, H. Garay, M. Save, Transparent polymer nanocomposites: An overview on their synthesis and advanced properties, Prog. Polym. Sci. 89 (2019) 133–158. doi:10.1016/j.progpolymsci.2018.10.003.
[68] K. Haraguchi, H.-J. Li, Mechanical Properties and Structure of Polymer−Clay Nanocomposite Gels with High Clay Content, Macromolecules. 39 (2006) 1898–1905. doi:10.1021/ma052468y.
[69] K. Haraguchi, R. Farnworth, A. Ohbayashi, T. Takehisa, Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly( N , N -dimethylacrylamide) and Clay, Macromolecules. 36 (2003) 5732–5741. doi:10.1021/ma034366i.
[70] D.W. Chae, B.C. Kim, Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing, Polym. Adv. Technol. 16 (2005) 846–850. doi:10.1002/pat.673.
[71] M.I. Sarwar, S. Zulfiqar, Z. Ahmad, Polyamide–silica nanocomposites: mechanical, morphological and thermomechanical investigations, Polym. Int. 57 (2008) 292–296. doi:10.1002/pi.2343.
[72] R. Sengupta, A. Bandyopadhyay, S. Sabharwal, T.K. Chaki, A.K. Bhowmick, Polyamide-6,6/in situ silica hybrid nanocomposites by sol–gel technique: synthesis, characterization and properties, Polymer. 46 (2005) 3343–3354. doi:10.1016/j.polymer.2005.02.104.
[73] P.K. Khanna, N. Singh, Light emitting CdS quantum dots in PMMA: Synthesis and optical studies, J. Lumin. 127 (2007) 474–482. doi:10.1016/j.jlumin.2007.02.037.
[74] S.-H. Hsiao, G.-S. Liou, L.-M. Chang, Synthesis and properties of organosoluble polyimide/clay hybrids, J. Appl. Polym. Sci. 80 (2001) 2067–2072. doi:10.1002/app.1306.
[75] R. Singh, V. Mahto, Synthesis, characterization and evaluation of polyacrylamide graft starch/clay nanocomposite hydrogel system for enhanced oil recovery, Pet. Sci. 14 (2017) 765–779. doi:10.1007/s12182-017-0185-y.
[76] J. Zhou, G. Wang, L. Zou, L. Tang, M. Marquez, Z. Hu, Viscoelastic Behavior and In Vivo Release Study of Microgel Dispersions with Inverse Thermoreversible Gelation, Biomacromolecules. 9 (2008) 142–148. doi:10.1021/bm700918d.
[77] F. Ganji, E. Vasheghani-Farahani, Hydrogels in Controlled Drug Delivery Systems, (n.d.) 26.
[78] M.B. Salehi, E. Vasheghani-Farahani, M.V. Sefti, A.M. Moghadam, H. Naderi, Rheological and transport properties of sulfonated polyacrylamide hydrogels for water shutoff in porous media, Polym. Adv. Technol. 25 (2014) 396–405.
[79] B. Baroli, Hydrogels for Tissue Engineering and Delivery of Tissue-Inducing Substances, J. Pharm. Sci. 96 (2007) 2197–2223. doi:10.1002/jps.20873.
[80] A.M. Moghadam, M.V. Sefti, M.B. Salehi, A.D. Koohi, M. Sheykhan, Effect of Nanoclay along with Other Effective Parameters on Gelation Time of Hydro Polymer Gels, J. Macromol. Sci. Part B. 51 (2012) 2015–2025. doi:10.1080/00222348.2012.661667.
[81] K. Swaroop, H.M. Somashekarappa, Swelling characteristics and drug release kinetics of Ag/PVA hydrogel nanocomposites, in: Bhubaneswar, Odisha, India, 2017: p. 140025. doi:10.1063/1.4980807.
[82] A. Karimi, W.M.A. Wan Daud, Comparison the properties of PVA/Na + -MMT nanocomposite hydrogels prepared by physical and physicochemical crosslinking, Polym. Compos. 37 (2016) 897–906. doi:10.1002/pc.23248.
[83] P. Dutta, N.N. Dass, N.S. Sarma, Stimuli responsive carbon nanocomposite hydrogels with efficient conducting properties as a precursor to bioelectronics, React. Funct. Polym. 90 (2015) 25–35. doi:10.1016/j.reactfunctpolym.2015.03.009.
[84] A. Kikuchi, T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds, Prog. Polym. Sci. 27 (2002) 1165–1193. doi:10.1016/S0079-6700(02)00013-8.
[85] M.A.C. Stuart, W.T.S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials, Nat. Mater. 9 (2010) 101–113. doi:10.1038/nmat2614.
[86] S. Kujala, J. Ryhänen, T. Jämsä, A. Danilov, J. Saaranen, A. Pramilad, J. Tuukkanen, Stimuli-responsive polymers and biomedical applications, (n.d.) 1.
[87] G. Filipcsei, J. Feher, M. Zrınyi, Electric field sensitive neutral polymer gels, J. Mol. Struct. (2000) 9.
[88] W.-F. Lee, Y.-C. Chen, Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive, J. Appl. Polym. Sci. 91 (2004) 2934–2941. doi:10.1002/app.13499.
[89] F. Ullah, M.B.H. Othman, F. Javed, Z. Ahmad, H.Md. Akil, Classification, processing and application of hydrogels: A review, Mater. Sci. Eng. C. 57 (2015) 414–433. doi:10.1016/j.msec.2015.07.053.
[90] P. Li, N.H. Kim, Siddaramaiah, J.H. Lee, Swelling behavior of polyacrylamide/laponite clay nanocomposite hydrogels: pH-sensitive property, Compos. Part B Eng. 40 (2009) 275–283. doi:10.1016/j.compositesb.2009.01.001.
[91] B.D. Ratner, ed., Biomaterials science: an introduction to materials in medicine, 2nd ed, Elsevier Academic Press, Amsterdam ; Boston, 2004.
[92] N.A. Peppas, J.Z. Hilt, A. Khademhosseini, R. Langer, Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology, Adv. Mater. 18 (2006) 1345–1360. doi:10.1002/adma.200501612.
[93] M.F. Akhtar, M. Hanif, N.M. Ranjha, Methods of synthesis of hydrogels … A review, Saudi Pharm. J. 24 (2016) 554–559. doi:10.1016/j.jsps.2015.03.022.
[94] A. Memic, H.A. Alhadrami, M.A. Hussain, M. Aldhahri, F. Al Nowaiser, F. Al-Hazmi, R. Oklu, A. Khademhosseini, Hydrogels 2.0: improved properties with nanomaterial composites for biomedical applications, Biomed. Mater. 11 (2015) 014104. doi:10.1088/1748-6041/11/1/014104.
[95] W.-F. Su, Principles of Polymer Design and Synthesis, 2013. doi:10.1007/978-3-642-38730-2.
[96] K. Haraguchi, H.-J. Li, Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels, Angew. Chem. Int. Ed. 44 (2005) 6500–6504. doi:10.1002/anie.200502004.
[97] Hydrogels, Cross linking, Gel, Polymer, (n.d.) 8.
[98] R. Panahi, M. Baghban-Salehi, Protein-Based Hydrogels, in: Md.I.H. Mondal (Ed.), Cellul.-Based Superabsorbent Hydrogels, Springer International Publishing, Cham, 2018: pp. 1–40. doi:10.1007/978-3-319-76573-0_52-1.
[99] S. Rahimi, M. Habibian, M.B. Salehi, Effect of polymer molar mass and montmorillonite content on polymer flooding using a glass micromodel, Appl. Clay Sci. 163 (2018) 186–195. doi:10.1016/j.clay.2018.07.029.
[100] C. Zareie, M.V. Sefti, A.R. Bahramian, M.B. Salehi, A polyacrylamide hydrogel for application at high temperature and salinity tolerance in temporary well plugging, Iran. Polym. J. 27 (2018) 577–587. doi:10.1007/s13726-018-0634-5.
[101] C.-F. Kuan, C.-H. Chen, H.-C. Kuan, K.-C. Lin, C.-L. Chiang, H.-C. Peng, Multi-walled carbon nanotube reinforced poly (l-lactic acid) nanocomposites enhanced by water-crosslinking reaction, J. Phys. Chem. Solids. 69 (2008) 1399–1402. doi:10.1016/j.jpcs.2007.10.061.
[102] A. Mousavi Moghadam, M. Baghban Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles, Rev. Chem. Eng. 35 (2019) 531–563. doi:10.1515/revce-2017-0105.
[103] S. Rajaee, M. Baghban Salehi, A. Mousavi Moghadam, M. Vafaie Sefti, S. Mohammadi, Nanocomposite hydrogels adsorption: Experimental investigation and performance on sandstone core, J. Pet. Sci. Eng. 159 (2017) 934–941. doi:10.1016/j.petrol.2017.08.034.
[104] A.M. Salgueiro, A.L. Daniel-da-Silva, S. Fateixa, T. Trindade, κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers, Carbohydr. Polym. 91 (2013) 100–109. doi:10.1016/j.carbpol.2012.08.004.
[105] S. Scognamillo, V. Alzari, D. Nuvoli, J. Illescas, S. Marceddu, A. Mariani, Thermoresponsive super water absorbent hydrogels prepared by frontal polymerization of N-isopropyl acrylamide and 3-sulfopropyl acrylate potassium salt, J. Polym. Sci. Part Polym. Chem. 49 (2011) 1228–1234. doi:10.1002/pola.24542.
[106] Y.D. Cerda-Sumbarda, I. Zapata-Gonzalez, A. Licea-Claverie, A. Zizumbo-Lopez, L. F. Ramos-de Valle, A. Espinoza-Martínez, Poly(hexylacrylate) Core -poly(ethyleneglycol methacrylate) Shell nanogels as fillers for poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels, Polym. Eng. Sci. 59 (2019) 170–181. doi:10.1002/pen.24884.
[107] M. Capurro, F. Barberis, Evaluating the mechanical properties of biomaterials, in: Biomater. Bone Regen., Elsevier, 2014: pp. 270–323. doi:10.1533/9780857098104.2.270.
[108] J. Mewis, N.J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, Cambridge, 2011. doi:10.1017/CBO9780511977978.
[109] M.B. Salehi, A.M. Moghadam, Rheological Study of Polyacrylamide Hydrogels in Harsh Reservoir Condition for Water Shutoff, (n.d.) 8.
[110] A. Hajipour, M. Baghban Salehi, M. Vafaie Sefti, A. Heidari, Experimental study of polyacrylamide gel in close-in well operation, Polym. Adv. Technol. 29 (2018) 1278–1286. doi:10.1002/pat.4239.
[111] W. Zhao, H. Xu, Y. Liu, J. Xu, R. Luan, X. Feng, Temperature-dependent transmittance nanocomposite hydrogel with high mechanical strength and controllable swelling memory behavior, Eur. Polym. J. 112 (2019) 328–333. doi:10.1016/j.eurpolymj.2019.01.026.
[112] K. Haraguchi, T. Takehisa, M. Ebato, Control of Cell Cultivation and Cell Sheet Detachment on the Surface of Polymer/Clay Nanocomposite Hydrogels, Biomacromolecules. 7 (2006) 3267–3275. doi:10.1021/bm060549b.
[113] F. Fiorini, E.A. Prasetyanto, F. Taraballi, L. Pandolfi, F. Monroy, I. López-Montero, E. Tasciotti, L. De Cola, Nanocomposite Hydrogels as Platform for Cells Growth, Proliferation, and Chemotaxis, Small. 12 (2016) 4881–4893. doi:10.1002/smll.201601017.
[114] T. Dvir, B.P. Timko, M.D. Brigham, S.R. Naik, S.S. Karajanagi, O. Levy, H. Jin, K.K. Parker, R. Langer, D.S. Kohane, Nanowired three-dimensional cardiac patches, Nat. Nanotechnol. 6 (2011) 720–725. doi:10.1038/nnano.2011.160.
[115] M. Kheirabadi, R. Bagheri, K. Kabiri, Swelling and mechanical behavior of nanoclay reinforced hydrogel: single network vs. full interpenetrating polymer network, Polym. Bull. 72 (2015) 1663–1681. doi:10.1007/s00289-015-1362-z.
[116] X. Su, B. Chen, Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels, Carbohydr. Polym. 197 (2018) 497–507.
[117] S. Ahadian, J. Ramón-Azcón, M. Estili, X. Liang, S. Ostrovidov, H. Shiku, M. Ramalingam, K. Nakajima, Y. Sakka, H. Bae, T. Matsue, A. Khademhosseini, Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication, Sci. Rep. 4 (2014) 4271.
[118] A. Tripathi, S. Saravanan, S. Pattnaik, A. Moorthi, N.C. Partridge, N. Selvamurugan, Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper–zinc for bone tissue engineering, Int. J. Biol. Macromol. 50 (2012) 294–299. doi:10.1016/j.ijbiomac.2011.11.013.
[119] C. Chang, N. Peng, M. He, Y. Teramoto, Y. Nishio, L. Zhang, Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials, Carbohydr. Polym. 91 (2013) 7–13. doi:10.1016/j.carbpol.2012.07.070.
[120] S.A. Meenach, J.Z. Hilt, K.W. Anderson, Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy, Acta Biomater. 6 (2010) 1039–1046. doi:10.1016/j.actbio.2009.10.017.
[121] Y. Cerda, I. Zapata-González, A. Licea-Claverı́e, A. Zizumbo-Lopez, L. Ramos, A. Espinoza‐Martínez, Poly(hexylacrylate) Core -poly(ethyleneglycol methacrylate) Shell nanogels as fillers for poly(2-hydroxyethyl methacrylate) nanocomposite hydrogels, 2018. doi:10.1002/pen.24884.
[122] A. Barati, Z. Eskandari, S.T. Miri, M. Asgari, Removal of Fluoride Ion from Aqueous Solution by Nanocomposite Hydrogel Based on Starch/Sodium Acrylate/Nano Aluminum Oxide, Sci. Technol. 26 (n.d.) 381–391.
[123] M. Zhong, Y.-T. Liu, X.-M. Xie, Self-healable, super tough graphene oxide–poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions, J. Mater. Chem. B. 3 (2015) 4001–4008. doi:10.1039/C5TB00075K.
[124] G. Deen, V. Chua, Synthesis and Properties of New “Stimuli” Responsive Nanocomposite Hydrogels Containing Silver Nanoparticles, Gels. 1 (2015) 117–134. doi:10.3390/gels1010117.
[125] W.L. Hom, S.R. Bhatia, Significant enhancement of elasticity in alginate-clay nanocomposite hydrogels with PEO-PPO-PEO copolymers, Polymer. 109 (2017) 170–175. doi:10.1016/j.polymer.2016.12.058.
[126] Q.-B. Wei, F. Fu, Y.-Q. Zhang, L. Tang, Preparation, characterization, and antibacterial properties of pH-responsive P(MMA-co-MAA)/silver nanocomposite hydrogels, J. Polym. Res. 21 (2014) 349. doi:10.1007/s10965-013-0349-4.
[127] C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels–Alder Click Reaction, ACS Sustain. Chem. Eng. 5 (2017) 6167–6174. doi:10.1021/acssuschemeng.7b01060.
[128] G. Gao, G. Du, Y. Sun, J. Fu, Self-Healable, Tough, and Ultrastretchable Nanocomposite Hydrogels Based on Reversible Polyacrylamide/Montmorillonite Adsorption, ACS Appl. Mater. Interfaces. 7 (2015) 5029–5037. doi:10.1021/acsami.5b00704.
[129] Q. Wang, J.L. Mynar, M. Yoshida, E. Lee, M. Lee, K. Okuro, K. Kinbara, T. Aida, High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder, Nature. 463 (2010) 339.
[130] A. Servant, V. Leon, D. Jasim, L. Methven, P. Limousin, E.V. Fernandez-Pacheco, M. Prato, K. Kostarelos, Graphene-Based Electroresponsive Scaffolds as Polymeric Implants for On-Demand Drug Delivery, Adv. Healthc. Mater. 3 (2014) 1334–1343. doi:10.1002/adhm.201400016.
[131] W. Zhao, K. Odelius, U. Edlund, C. Zhao, A.-C. Albertsson, In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery, Biomacromolecules. 16 (2015) 2522–2528. doi:10.1021/acs.biomac.5b00801.
[132] A. Karimi, W.M.A. Wan Daud, Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels: A review, Polym. Compos. 38 (2017) 1086–1102. doi:10.1002/pc.23671.
[133] S. Liu, M. Huang, Preparation and Properties of Graphene Oxide Modified Nanocomposite Hydrogels, IOP Conf. Ser. Mater. Sci. Eng. 62 (2014) 012017. doi:10.1088/1757-899X/62/1/012017.
[134] A.K. Gaharwar, S.A. Dammu, J.M. Canter, C.-J. Wu, G. Schmidt, Highly Extensible, Tough, and Elastomeric Nanocomposite Hydrogels from Poly(ethylene glycol) and Hydroxyapatite Nanoparticles, Biomacromolecules. 12 (2011) 1641–1650. doi:10.1021/bm200027z.
[135] A.K. Gaharwar, C. Rivera, C.-J. Wu, B.K. Chan, G. Schmidt, Photocrosslinked nanocomposite hydrogels from PEG and silica nanospheres: Structural, mechanical and cell adhesion characteristics, Mater. Sci. Eng. C. 33 (2013) 1800–1807. doi:10.1016/j.msec.2012.12.099.
[136] S. Zhong, L.Y.L. Yung, Enhanced biological stability of collagen with incorporation of PAMAM dendrimer, J. Biomed. Mater. Res. A. 91A (2009) 114–122. doi:10.1002/jbm.a.32188.
[137] M. Rasoulzadeh, H. Namazi, Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent, Carbohydr. Polym. 168 (2017) 320–326. doi:10.1016/j.carbpol.2017.03.014.
[138] G.R. Mahdavinia, A. Afzali, H. Etemadi, H. Hoseinzadeh, Magnetic/pH-sensitive nanocomposite hydrogel based carboxymethyl cellulose –g- polyacrylamide/montmorillonite for colon targeted drug delivery, Nanomedicine Res. J. 2 (2017). doi:10.22034/nmrj.2017.58964.1058.
[139] H.-P. Cong, P. Wang, S.-H. Yu, Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design, 2013. doi:10.1021/cm401919c.
[140] A. López-Noriega, C.L. Hastings, B. Ozbakir, K.E. O’Donnell, F.J. O’Brien, G. Storm, W.E. Hennink, G.P. Duffy, E. Ruiz-Hernández, Hyperthermia-Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable Hydrogel for Local Chemotherapy, Adv. Healthc. Mater. 3 (2014) 854–859. doi:10.1002/adhm.201300649.
[141] R. Seyrani, G.B. Marandi, Carrageenan-based Hydrogel Nanocomposites Prepared in Presence of Carbon Nanotubes and Their Adsorption of Brilliant Green, Iran J Polym Sci TechnolPersian. 28 (2016) 528–517.
[142] J. Wang, W. Wu, Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels, Eur. Polym. J. 41 (2005) 1143–1151. doi:10.1016/j.eurpolymj.2004.11.034.
[143] G. Mahdavinia, A. Baghban, S. Zorofi, A. Massoudi, Kappa-Carrageenan Biopolymer-Based Nanocomposite Hydrogel and Adsorption of Methylene Blue Cationic Dye from Water, 2014.
[144] M. Çelik, M. Önal, Synthesis and characterization of poly(glycidyl methacrylate)/Na-montmorillonite nanocomposites: Synthesis and Characterization of PGMA/NA-MMT Nanocomposites, J. Appl. Polym. Sci. 94 (2004) 1532–1538. doi:10.1002/app.21075.
[145] M. Aflaki Jalali, A. Dadvand Koohi, M. Sheykhan, Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study, Carbohydr. Polym. 142 (2016) 124–132. doi:10.1016/j.carbpol.2016.01.033.
[146] H. Hosseinzadeh, S. Zoroufi, G.R. Mahdavinia, Study on adsorption of cationic dye on novel kappa-carrageenan/poly(vinyl alcohol)/montmorillonite nanocomposite hydrogels, Polym. Bull. 72 (2015) 1339–1363. doi:10.1007/s00289-015-1340-5.
[147] F. Shakib, A. Dadvand Koohi, A. Kamran Pirzaman, Adsorption of methylene blue by using novel chitosan-g-itaconic acid/bentonite nanocomposite – equilibrium and kinetic study, Water Sci. Technol. 75 (2017) 1932–1943. doi:10.2166/wst.2017.077.
[148] W. Kong, M. Chang, C. Zhang, X. Liu, B. He, J. Ren, Preparation of Xylan-g-/P(AA-co-AM)/GO Nanocomposite Hydrogel and its Adsorption for Heavy Metal Ions, Polymers. 11 (2019) 621. doi:10.3390/polym11040621.
[149] Y. Yu, G. Zhang, L. Ye, Preparation and adsorption mechanism of polyvinyl alcohol/graphene oxide-sodium alginate nanocomposite hydrogel with high Pb(II) adsorption capacity, J. Appl. Polym. Sci. 136 (2019) 47318. doi:10.1002/app.47318.
[150] B. Rahnama, H. Baniasadi, M. Lotfi, Fabrication of PVA/Gr/TiO2 adsorbent and study of its application in removal of malachite green, Mdrsjrns. 3 (2019) 59–68.
[151] H. Zhu, X. Yao, Synthesis and Characterization of Poly(Acrylamide-co-2-Acrylamido-2-Methylpropane Sulfonic Acid)/Kaolin Superabsorbent Composite, 2013. doi:10.1080/10601325.2013.741891.
[152] C. Zareie, M. Vafaei, A.R. Bahramian, M. Baghban Salehi, Investigation of the performance of silica nanoparticles in increasing the strength of a polymer gel prepared by polyacrylamide in oil well condition, Mdrsjrns. 1 (2018) 39–49.