مطالعات ستون بستر ثابت جذب زیستی اورانیم (VI) توسط جاذب زیستی ترکیبی Pseudomonas putida – Chitosan

نوع مقاله : پژوهشی اصیل

نویسندگان

پژوهشگاه علوم و فنون هسته ای

چکیده
در این پژوهش، توانایی جذب ­زیستی اورانیم (VI) توسط جاذب ترکیبی Pseudomonas putida @ Chitosan درون ستون بستر ثابت مورد بررسی قرار گرفت. نتایج نشان داد که افزایش غلظت خوراک ورودی از 50 تا mg/L 200 موجب افزایش ظرفیت جذب از 188/76 تا mg/g 429/28 می­ گردد. بدلیل استفاده حداکثری از اختلاف غلظت خوراک به عنوان نیروی محرکه ­ی جذب در ستون بستر ثابت، ظرفیت جذب­ زیستی جاذب درون ستون از مقدار آن در حالت ناپیوسته بیشتر شد. کاهش در دبی جریان ورودی از طریق افزایش زمان اقامت برای نفوذ یا برهم­ کنش بهتر و نیز دسترسی بیشتر به جایگاه­ های اتصال برای یون­ های اورانیم، موجب بهبود عملکرد ستون شد. افت ظرفیت جذب­ زیستی ناشی از افزایش دبی جریان ورودی ثابت کرد که نفوذ درون ذره ­ای، مرحله کنترل­ کننده جذب می­ باشد. با کاهش اندازه ذرات جاذب از 1/5 به mm 1، یک افزایش محسوس در ظرفیت جذب از 167/02 تا mg/g 296/87 بدست آمد. همچنین با آنالیزهای FTIR و تیتراسیون پتانسیومتری ثابت شد که 3+NH تنها گروه عاملی فعال در فرآیند جذب درون کیتوزان است، در حالی­که گروه ­های 3+NH–،3NH–، COOH و –OH– در جاذب ترکیبی فعال هستند. در نتیجه، مطالعه حاضر نشان داد که جاذب­ زیستی ترکیبی حاضر می­تواند برای جذب­ زیستی اورانیم (VI) از محلول­ های آبی در حالت پیوسته مناسب باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Fixed–bed column studies of U(VI) biosorption using Pseudomonas putida – Chitosan hybrid biosorbent

نویسندگان English

Hozhabr Sohbatzadeh
Ali reza Keshtkar
Jaber Safdari
Materials and Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute
چکیده English

In current research, Pseudomonas putida @ Chitosan hybrid biosorbent capability for U(VI) biosorption in a fixed bed column was investigated. The results showed that the increase in inlet concentration from 50 to 200 mg/L increased the biosorption capacity from 188.75 to 429.28 mg/g. In the column system, the sorption capacity was higher than that of the batch system because fixed bed column make best use of the inlet concentration difference as sorption driving force. Decrease in inlet flow rate through increase in the residence time for better diffusion or interaction as well as greater access to binding sites for uranium ions caused an improvement in column performance. Decline in the biosorption capacity due to increase in the inlet flow rate demonstrated that intraparticle diffusion was the rate-controlling step. With decreasing in the sorbent particle size from 1.5 to 1 mm, a significant increase in the biosorption capacity from 179.02 to 296.87 mg/g was achieved. FTIR and potentiometric titration confirmed that while –NH3+ was the dominant functional group in the chitosan, –NH3+, –NH3, –OH, –COOH were responsible for the hybrid biosorbent. In conclusion, the present study indicated that Pseudomonas putida @ Chitosan could be a suitable biosorbent for U(VI) biosorption from aqueous solution in the continuous system.

کلیدواژه‌ها English

Biosorption
U(VI)
Fixed bed column
Pseudomonas putida @ Chitosan
1. Hayati, B., et al., 2018, Heavy metal adsorption using PAMAM/CNT nanocomposite from aqueous solution in batch and continuous fixed bed systems. Chemical Engineering Journal, 346: p. 258-270.
2. Vijayaraghavan, K. and Y.-S. Yun, 2008, Bacterial biosorbents and biosorption. Biotechnology Advances, 26: p. 266-291.
3. Huang, W. and Z.-m. Liu, 2013, Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: Isotherm kinetic characteristic and mechanism studies. Colloids and Surfaces B: Biointerfaces, 105: p. 113-119.
4. Merroun, M. L. and S. Selenska-Pobell, 2008, Bacterial interactions with uranium: An environmental perspective. Journal of Contaminant Hydrology, 102 p. 285–295.
5. Pacheco, P.H., et al., 2011, Biosorption: A new rise for elemental solid phase extraction methods. Talanta, 85: p. 2290-2300.
6. Xiao, G., et al., 2013, Plate column biosorption of Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass: Optimization using statistical design methods. Bioresource Technology, 143: p. 490-498.
7. Zhang, X., et al., 2011, Study of thermodynamics and dynamics of removing Cu(II) by biosorption membrane of Penicillium biomass. Journal of Hazardous Materials, 193: p. 1-9.
8. Yelebe, Z.R., B.Z. Yelebe, and R.J. Samuel, 2013, design of fixed bed column for the removal of metal contaminants from industrial wastewater. Journal of Engineering and Applied Sciences, 5(2): p. 68-77.
9. Wang, J. and C. Chen, 2014, Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 160: p. 129-141.
10. Bulgariu, D. and L. Bulgariu, 2013, Sorption of Pb(II) onto a mixture of algae waste biomass and anion exchanger resin in a packed-bed column. Bioresource Technology, 129: p. 374-380.
11. Zheng, M., et al., 2019, Adsorption desulfurization performance and adsorption-diffusion study of B2O3 modified Ag-CeOx/TiO2-SiO2. Journal of Hazardous Materials, 362: p. 424-435.
12. Sohbatzadeh, h., et al., 2016, U(VI) biosorption by bi-functionalized Pseudomonas putida @ chitosan bead: Modeling and optimization using RSM. International Journal of Biological Macromolecules, 89: p. 647-658.
13. Sohbatzadeh, H., et al., 2017, Insights into the biosorption mechanisms of U(VI) by chitosan bead containing bacterial cells: A supplementary approach using desorption eluents, chemical pretreatment and PIXE–RBS analyses. Chemical Engineering Journal, 323: p. 492–501.
14. Choi, J., J.Y. Lee, and J.-S. Yang, 2009, Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. Journal of Hazardous Materials, 161: p. 157-162.
15. Wan Ngah, W.S., M.A.K.M. Hanafiah, and S.S. Yong, 2008, Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies. Colloids and Surfaces B: Biointerfaces, 65: p. 18-24.
16. Podder, M.S. and C.B. Majumder, 2016, Fixed-bed column study for As(III) and As(V) removal and recovery by bacterial cells immobilized on Sawdust/MnFe2O4 composite. Biochemical Engineering Journal, 105: p. 114-135.
17. Izquierdo, M., et al., 2012, Study of the Interaction Mechanism in the Biosorption of Copper(II) Ions onto Posidonia oceanica and Peat. Clean – Soil, Air, Water, 40 (4): p. 428-437.
18. Peng, Q., et al., 2010, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 177 p. 676–682.
19. Vakili, M., et al., 2016, Chitosan hydrogel beads impregnated with hexadecylamine forimproved reactive blue 4 adsorption. Carbohydrate Polymers, 137: p. 139-146.
20. Ahmed Mohamed, N. and N. Yahya Al-mehbad, 2013, Novel terephthaloyl thiourea cross-linked chitosan hydrogels as antibacterial and antifungal agents. International Journal of Biological Macromolecules, 57: p. 111-117.
21. Liu, Q., et al., 2015, Removal of fluoride from aqueous solution using Zr(IV) immobilizedcross-linked chitosan. International Journal of Biological Macromolecules, 77: p. 15-23.
22. Arief, V.O., et al., 2008, Recent Progress on Biosorption of Heavy Metals from Liquids Using Low Cost Biosorbents: Characterization, Biosorption Parameters and Mechanism Studies. Clean – Soil, Air, Water, 36 (12): p. 937-962.
23. Chojnacka, K., A. Chojnacki, and H. Gorecka, 2005, Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59: p. 75-84.
24. Wang, Q.Z., et al., 2006, Protonation constants of chitosan with different molecular weight and degree of deacetylation. Carbohydrate Polymers, 65: p. 194-201.
25. Kotrba, P., M. Mackova, and T. Macek, 2011, Microbial Biosorption of Metals. Springer Science+Business Media B.V. .
26. Zhao, W., et al., 2015, Bacterial cell surface properties: Role of loosely bound extracellularpolymeric substances (LB-EPS). Colloids and Surfaces B: Biointerfaces, 128: p. 600-607.
27. García-Mateos, F.J., et al., 2015, Removal of paracetamol on biomass-derived activated carbon: modeling the fixed bed breakthrough curves using batch adsorption experiments. Chemical Engineering Journal, 279: p. 18-30.
28. Auta, M. and B.H. Hameed, 2014, Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue. Chemical Engineering Journal, 237: p. 352-361.
29. Volesky, B., 2003, sorption and biosorption. BV Sorbex. 316.
30. Hethnawi, A., et al., 2018, Fixed-bed column studies of total organic carbon removal from industrial wastewater by use of diatomite decorated with polyethylenimine-functionalized pyroxene nanoparticles. Journal of Colloid and Interface Science, 513: p. 28-42.
31. Barron-Zambrano, J., et al., 2010, Biosorption of Reactive Black 5 from aqueous solutions by chitosan: Column studies. Journal of Environmental Management, 91: p. 2669-2675.
32. Kavand, M., et al., 2018, An improved Film-Pore-Surface Diffusion Model in the fixed-bed column adsorption for heavy metal ions: Single and multi-component systems. Process Safety and Environment Protection, 113: p. 330-342.
33. Esquerdo, V.M., et al., 2015, Kinetics and mass transfer aspects about the adsorption of tartrazine by a porous chitosan sponge. Reaction Kinetics, Mechanisms and Catalysis, 116(1): p. 105-117.
34. Sulaymon, A.H., S.A. Yousif, and M.M. Al-Faize, 2014, Competitive biosorption of lead mercury chromium and arsenic ions onto activated sludge in fixed bed adsorber. Journal of the Taiwan Institute of Chemical Engineers, 45(2): p. 325-337.