تهیه و تقویت استحکام برشی چسب اکریلیکی پایه‌آبی با قابلیت بازپراکنش در آب برای ایجاد مفصلهای سلولزی

نوع مقاله : پژوهشی اصیل

نویسندگان

تهران، دانشگاه تربیت مدرس، دانشکده مهندسی شیمی، گروه مهندسی پلیمر

چکیده
در سال‌های اخیر، به دلیل محدودیت منابع فسیلی و افزایش غیرمعمول قیمت محصولات پایه‌نفتی، تلاش‌های بسیاری در راستای بهره‌برداری صنعتی از چسب‌های مشتق از منابع طبیعی صورت گرفته است. اما استحکام چسبندگی این دسته از چسب‌ها نیازمند اصلاح است.

در مطالعه جاری، استحکام برشی لب­به­لب پلیمر طبیعی صمغ پارسی (Persian gum, PG) تراوش­شده از درخت بادام کوهی بر سه زیرآیند شیشه، پلی(اتیلن ترفتالات) و پارچه سلولزی مورد بررسی قرار گرفت. همچنین، به­منظور تهیه چسب پودری اکریلیکی و ارزیابی چسبندگی آن بر زیرآیندهای مذکور، آلیاژسازی پراکنه صمغ با لاتکس کوپلیمر پلی(متیل متاکریلات - تصادفی - بوتیل اکریلات) با 30 درصد وزنی متیل ­متاکریلات (Poly(methyl methacrylate-co-butyl acrylate) with 30 wt. % methyl methacrylate, MBC30) انجام شد. برهم‌کنش‌های مولکولی PG، MBC30 و آلیاژ حاوی 50 درصد وزنی PG با طیف‌سنجی فروسرخ شناسایی گردید. همچنین مورفولوژی آلیاژهای حاوی مقادیر مختلف PG با استفاده از میکروسکوپی الکترونی روبشی از سطح مقطع شکست آن‌ها ارزیابی شد.

مفصل سلولزی تهیه شده با پراکنه آبی PG استحکام برشی بالایی برابر با 340 کیلوپاسکال نشان داد؛ در حالی که PG به­دلیل عدم توانایی تشکیل فیلم یکپارچه، تردی زیاد و عدم قابلیت نفوذ و درهم‌تنیدگی مکانیکی با زیرآیندهای شیشه‌ای و پلی‌استری، مفصل مناسبی تشکیل نداد. نتایج نشان داد که با افزودن 50 درصد وزنی PG به MBC30، علاوه بر امکان تهیه چسب پودری، استحکام برشی MBC30 بر زیرآیندهای گوناگون از قبیل شیشه، پلی(اتیلن ترفتالات) و پارچه به ترتیب 20، 11 و 14 برابر MBC30 خالص افزایش یافت. به­ عبارت دیگر، با تقویت برهم‌کنش اجزای سازنده چسب و در نتیجه افزایش هم‌چسبی (Cohesiveness) آمیزه از یک سو و افزایش چسبندگی آمیزه چسب با زیرآیند از سوی دیگر می‌توان استحکام برشی چسب را بهبود بخشید. در پژوهش حاضر، صمغ پارسی به عنوان عامل بازپراکنش چسب‌های فشار- حساس اکریلیکی در آب معرفی و سامانه‌های چسبی جدیدی با قابلیت استفاده در صنایع سلولزی ابداع شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Preparation and Improvement of Shear Strength of a Water-Redispersible Waterborne Acrylic Adhesive for Making Cellulose Joints

نویسندگان English

Ali Ahmadi-Dehnoei
Somayeh Ghasemirad
Reza Shiri
Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
چکیده English

Research subject: In recent years, many attempts have been devoted to industrial usage of bio-based adhesives, as a result of fossil resources shortage and unusual increase in oil-based products prices. Adhesion strength of this category of adhesives, however, needs improvement.

Research approach: In the current study, lap-shear strength of joints made of a natural polymer, Persian gum (PG), exuded from wild almond tree, and three various substrates, glass, poly(ethylene terephthalate), and cellulose fabric, was investigated. Furthermore, in order to prepare powder acrylic adhesive and evaluate its adhesion to aforementioned substrates, the gum dispersion was blended with synthesized poly(methyl methacrylate-co-butyl acrylate) random copolymer containing 30 wt.% methyl methacrylate (MBC30). Molecular interactions in PG, MBC30, and 50 wt. % PG-containing blend were characterized by Fourier transform infrared spectroscopy. Moreover, morphology of blends containing various amounts of PG was evaluated using scanning electron microscopy of their fractured cross sections.

Main results: The textile joint made with PG dispersion in water showed high shear strength of about 340 kPa. However, PG could not form a suitable joint with glass and polyester substrates, as a consequence of its inability to form a homogeneous film, excessive brittleness, and its inability to diffuse and mechanically interlock with the substrates. Results showed that using an adhesive system containing 50/50 PG/MBC30, besides enabling preparation of powder adhesive, shear strength increased to 20, 11, and 14-fold with respect to pristine MBC30 on glass, poly(ethylene terephthalate), and textile substrates, respectively. In other words, shear strength of an adhesive could be improved by promoting the adhesive constituents interactions and subsequent increase in the blend cohesiveness, on the one hand, and increment of its adhesion to substrate, on the other hand. In the current research, Persian gum was introduced as a water-redispersing agent for acrylic pressure-sensitive adhesives and new adhesive systems were invented with usability in cellulose industry.

کلیدواژه‌ها English

Persian gum
Acrylic pressure-sensitive adhesive
Powder adhesive
Shear Strength
Water-redispersibility
1. Stokke D.D., Wu Q., and Han G., Introduction to Wood and Natural Fiber Composites, John Wiley & Sons Ltd, United Kingdom, p. 130, 2014.
2. Norström E., Fogelström L., Nordqvist P., Khabbaz F., and Malmström E., Gum Dispersions as Environmentally Friendly Wood Adhesives, Industrial Corps and Products 52, 736-744, 2014.
3. Arrington K.J., Radzinski S.C., Drummey K.J., Long T.E., and Matson J.B., Reversibly Cross-linkable Bottlebrush Polymers as Pressure-Sensitive Adhesives, ACS Applied Materials and Interfaces 10(31), 26662-26668, 2018.
4. Canetta E., Marchal J., Lei C.H., Deplace F., Koenig A.M., Creton C., Ouzineb K., and Keddie J.L., A Comparison of Tackified, Miniemulsion Core-Shell Acrylic Latex Films with Corresponding Particle-Blend Films: Structure-Property Relationships, Langmuir 25(18), 11021-11031, 2009.
5. Petri E.M., Adhesion & Bonding: Adhesives—Enablers of Sustainability, Metal Finishing 108(5), 20-22, 2010.
6. Imam S.H., Gordon S.H., Mao L., and Chen L., Environmentally Friendly Wood Adhesive from a Renewable Plant Polymer: Characteristics and Optimization, Polymer Degradation and Stability 73, 529-533, 2001.
7. Soleiman A., Challenges towards Characterization and Applications of a Novel Hydrocolloid: Persian Gum, Current Opinion in Colloid & Interface Science 28, 37-45, 2017.
8. Yadav M.P., Igartuburu J.M., Yan Y., Nothnagel E.A., Chemical Investigation of the Structural Basis of the Emulsifying Activity of Gum Arabic, Food Hydrocolloids 21, 297-308, 2007.
9. Mahfoudhi N., Chouaibi M., Donsi F., Ferrari G., and Hamdi S., Chemical Composition and Functional Properties of Gum Exudates from the Trunk of the Almond Tree, Food Science and Technology International 18(3), 241-250, 2012.
10. Mohammadi S. and Abbasi S., Scanlon M.G., Development of Emulsifying Property in Persian Gum using Octenyl Succinic Anhydride (OSA), International Journal of Biological Macromolecules 89, 396-405, 2016.
11. Cui S.W. (Ed.), Food Carbohydrates: Chemistry, Physical Properties, and Applications, CRC Press, Taylor & Francis Group, Chapter 6, 2005.
12. Ghasemirad S. and Mohammadi N., How Do Soft Nanoparticles Affect Temperature-Induced Nonlinearity of a UCST Copolymer Blend?, Colloid and Polymer Science 293(3), 677-686, 2015.
13. Hassan P.A., Rana S., and Verma G., Making Sense of Brownian Motion: Colloid Characterization by Dynamic Light Scattering, Langmuir 31(1), 3-12, 2014.
14. Parisi O.I., Morelli C., Scrivano L., Sinicropi M.S., Cesario M.G., Candamano S., Puoci F., and Sisci D., Controlled Release of Sunitinib in Targeted Cancer Therapy: Smart Magnetically Responsive Hydrogels as Restricted Access Materials, RSC Adv. 5, 65308-65315, 2015.
15. Paluszkiewicz C., Stodolak E., Hasik M., and Blazewicz M., FT-IR Study of Montmorillonite–Chitosan Nanocomposite Materials, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79(4), 784-788, 2011.
16. Valentin. R, Bonelli. B, Garrone. E, Di Renzo. F, Quignard. F, Accessibility of the Functional Groups of Chitosan Aerogel Probed by FT-IR-Monitored Deuteration, Biomacromolecules 8(11), 3646-3650, 2007.
17. Rezaei A., Nasirpour A., and Tavanai H., Fractionation and Some Physicochemical Properties of Almond Gum (Amygdalus Communis L.) Exudates, Food Hydrocolloids 60, 461-469, 2016.
18. Poddar M.K., Sharma S., Pattipaka S., Pamu D., and Moholkar V.S., Ultrasound-Assisted Synthesis of Poly(MMA–Co–BA)/Zno Nanocomposites with Enhanced Physical Properties, Ultrasonics Sonochemistry 39, 782-791, 2017.
19. Jia S., Chen Y., Yu Y., Han L., Zhang H. and Dong L., Effect of Ethylene/Butyl Methacrylate/Glycidyl Methacrylate Terpolymer on Toughness and Biodegradation of Poly(L-Lactic Acid), International Journal of Biological Macromolecules 127, 412-424, 2019.
20. Francisco-Vieira, L., Benavides R., Cuara-Diaz E., and Morales-Acosta D., Styrene-co-Butyl Acrylate Copolymers with Potential Application as Membranes in PEM Fuel Cell, International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2019.01.181, 2019.
21. Jingshui. X, Yangchuan. K, Qian. Z, and Xianglong. H, Synthesis and Properties of Poly(Butyl Acrylate-Co-Methyl Methacrylate) Copolymer Microspheres of Tunable Size using Suspension Polymerization, Composite Interfaces 20(3), 165-176, 2013.
22. Taenghom. T, Pan. Q, Rempel G.L, and Kiatkamjornwong. S, Synthesis and Characterization of Nano-Sized Poly[(Butyl Acrylate)-Co-(Methyl Methacrylate)-Co-(Methacrylic Acid)] Latex via Differential Microemulsion Polymerization, Colloid and Polymer Science 291(6), 1365-1374, 2013.
23. Van der Schueren L., Steyaert I., Schoenmaker B.D., and Clerck, K.D., Polycaprolactone/Chitosan Blend Nanofibres Electrospun from an Acetic Acid/Formic Acid Solvent System, Carbohydrate Polymers 88(4), 1221-1226, 2012.
24. Honma T., Senda T., and Inoue Y., Thermal Properties and Crystallization Behavior of Blends of Poly(ε‐Caprolactone) with Chitin and Chitosan, Polymer international 52(12), 1839-1846, 2013.
25. Ghorbani F.M, Kaffashi B., Shokrollahi P., Akhlaghi S., and Hedenqvist M.S., Effect of Hydroxyapatite Nano-Particles on Morphology, Rheology and Thermal Behavior of Poly(Caprolactone)/Chitosan Blends, Materials Science and Engineering: C 59, 980-989, 2016.
26. Czech Z., Maciejewski Z., and Kondratowicz-Maciejewska K., Water-Borne Pressure-Sensitive Adhesive Acrylics Modified Using Amorphous Silica Nanoparticles, Polish Journal of Chemical Technology 18(4), 124-128, 2016.
27. Patel S., Ganguly A., and Bhowmick A.K., Synthesis and Properties of Nanocomposite Adhesives, Journal of Adhesion Science and Technology 20(4), 371-385, 2006.
28. Akhlaghi S., Sharif A., Kalaee M., Nouri A., and Manafi M., Morphology, Nanomechanical and Thermodynamic Surface Characteristic of Nylon6/Feather Keratin Blend Films: An Atomic Force Microscopy Investigation, Polymer International 61, 646-656, 2012.
29. Erchqui F., Fotso Talla A.S., and Page J.S.Y.D., Influence of the Choice of Additives in High Melting Polyesters (HMP) Reinforced with Natural Fibers (NF) in View of Structural Applications, 26th ASC Annual Technical Conference of the American Society of Composites, Montreal, September, 2011.
30. Guragain R.P., Gautam S., Subedi D.P., and Shrestha R., Effect of Plasma Treatment on the Surface of Polyethylene Terephthalate with 50Hz Dielectric Barrier Discharge at Near-Atmospheric Pressure, International Journal of Recent Research and Review 9, 34-37, 2016.
31. Szymczyk K., Zdziennicka A., and Janczuk B., Adsorption and Wetting Properties of Cationic, Anionic and Nonionic Surfactants in the Glass-Aqueous Solution of Surfactant-Air System, Materials Chemistry and Physics 162, 166-176, 2015.