Removal of Hydrogen Sulfide

Document Type : Original Research

Authors

1 Shahid Bahonar University of Kerman

2 Yazd University

Abstract
Abstract



Research Subject: Sulfide removal from sour water is essential, before reuse or release of sour water into the environment. Regarding the high costs of traditional methods, biological removal can be used as a reliable alternative.

Research Approach: Biological sulfide removal from sour water was investigated in a batch reactor using Thiobacillus sp. as a dominant species of a mixed culture. A conceptual model was developed to describe the process of H2S removal from sour water in the batch reactor. The model considers H2S and O2 transfer between liquid and gas phases, biological oxidation of H2S to sulfate and elemental sulfur, and chemical oxidation of H2S to thiosulfate in the liquid phase. The governing equations were derived using the principles of mass conservation and biochemical reactions. Several batch runs were performed to obtain experimental data on the variation of sulfide, sulfate, thiosulfate, and oxygen concentrations in the system as a function of time, and an algorithm was devised to use the method of Particle Swarm Optimization together with the numerical solution of the model equations to estimate biokinetic parameters. Additional batch runs under different conditions were performed to verify the accuracy of the model. These results indicated reasonable accuracy of the model to predict the performance of a batch reactor for the removal of H2S from sour water. The novelty of this model is considering different pathways for sulfide oxidation which includes product selectivity.

Main Results: The maxim specific oxygen uptake rate (SOUR=OUR/X) is one of the most important parameters in the evaluation of the biological activity of the microorganisms. The calculated value for this parameter was almost constant (16 mg DO g-1 VSS min-1) during all sulfide oxidation tests indicating that the maximum specific oxidation capacity of the biomass is independent of substrate and biomass concentration. Results exhibited bacteria prefer to partially oxidized sulfide to elemental sulfur, however this preference is a function of dissolved oxygen and substrate availability.

Keywords

Subjects


[1] Chung Y.C., Ho K.L. and Tseng C.P., Treatment of High H2S Concentrations by chemical Absorption and Biological Oxidation Process, Environ. Eng. Sci., 23: 942-953, 2006.
[2] Kim S. and Deshusses M.A., Understanding the limits of H2S degrading biotrickling filters using a differential biotrickling filter, Chem. Eng. J., 113: 119–126, 2005.
[3] Janssen A. and Sleyster R., Van der Kaa C., Jochemsen A., Bontsema J., Lettinga G., Biological sulfide oxidation in a fed-batch reactor, Biotechnol. Bioeng., 47: 327-333, 1995.
[4] Tang K., Baskaran V. and Nemati M., Bacteria of the sulfur cycle: An overview of microbiology, biokinetics and their role in petroleum and mining industries, Biochem. Eng. J., 44: 73–94, 2009.
[5] López L.R., Dorado A.D., Mora M., Gamisans X., Lafuente J. and Gabriel D., Modeling an aerobic biotrickling filter for biogas desulfurization through a multi-step oxidation mechanism, Chem. Eng. J., 294: 447-457, 2016.
[6] عبادی، خدیجه؛ جوانمردی، جعفر؛ پرواسی، پیام؛ روستا، علی اکبر، بررسی تجربی حذف بیولوژیکی سولفید هیدروژن از گاز دفن گاه شیراز، نشریه شیمی و مهندسی شیمی ایران، آماده انتشار
[7] Ramos I., Pérez R. and Fdz-Polanco M., The headspace of microaerobic reactors: sulfide-oxidizing population and the impact of cleaning on the efficiency of biogas desulfurization, Bioresour. Technol., 158: 63-73, 2014.
[8] Vikromvarasiri N., Champreda V., Boonyawanich S. and Pisutpaisal N., Hydrogen sulfide removal from biogas by biotrickling filter inoculated with Halothiobacillus Neapolitans, Int. J. Hydrogen Energy., 42: 18425-18433, 2017.
[9] J. Kanjanarong, Giri B.S. and Jaisi D.P., Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: Evaluation of efficiency and mechanisms, Bioresour. Technol., 234: 115-121, 2017.
[10] Sheng M.S. and Liang Y., Biological removal of H2S from the livestock manure using a biofilter, Biotechnol. Bioprocess. Eng., 18: 1008-1015, 2013.
[11] Jaber M.B., Couvert A., Amrane A., Rouxel F., Cloirec P.L. and Dumont E., Biofiltration of high concentration of H2S in waste air under extreme acidic conditions, N Biotechnol., 33: 136–143, 2016.
[12] Chen Y., Wang X., He S., Zhu S. and Shen S., The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H2S from air, J. Environ. Manage., 165: 11-16, 2016.
[13] مجرد، گل محمد؛ فاتحی فر، اسماعیل؛ ساعدی، سعید، حذف زیستی هیدروژن سولفید در راکتور ایرلیفت بیوفیلمی سوسپانسیونی، نشریه شیمی و مهندسی شیمی ایران، 30(2): 1 تا 9 (1390).
[14] Roosta A., Jahanmiri A., Mowla D. and Niazi A., Mathematical modeling of biological sulfide removal in a fed batch bioreactor, Biochem. Eng. J., 58: 50–56, 2011.
[15] Shinabe K., Oketani S., Ochi T. and Matsumuraz M., Characteristics of Hydrogen Sulfide Removal by Thiobacillus thiooxidans KS1 isolated from a Carrier-Packed Biological Deodorization System, J. Ferment. Bioeng., 80: 592-598, 1995.
[16] Mora M., Fernández M., Gόmez J.M., Cantero D., Lafuente J., Gamisans X. and Gabriel D., Kinetic and stoichiometric characterization of anoxic sulfide oxidation by SO-NR mixed cultures from anoxic biotrickling filters, Appl. Microbiol. Biotechnol., 99: 77-87, 2015.
[17] Mora M., López L.R., Lafuente J., Pérez J., Kleerebezem R., Van Loosdrecht M., Gamisans X. and Gabriel D., Respirometric characterization of aerobic sulfide, thiosulfate and elemental sulfur oxidation by S-oxidizing biomass, Water Res., 89: 282-292, 2016.
[18] Gonzalez-Sanchez A., Tomas M., Dorado A.D., Gamisans X., Guisasola A., Lafuente J., Gabriel D. and Development of a kinetic model for elemental sulfur and sulfate formation from the autotrophic sulfide oxidation using respirometric techniques., Water Sci. Technol. 59: 1323–1329, 2009.
[19] Andreasen R.R., Nicolai R.E. and Poulsen T.G., Pressure drop in biofilters as related to dust and biomass accumulation, J. Chem. Technol. Biotechnol., 87: 806–816, 2012.
[20] Dochain D. and Vanrolleghem P.A., Dynamical Modelling and Estimation in Wastewater Treatment Processes, IWA Publishing, United Kingdom, p, 300, 2001.
[21] Takashima T., Nishiki T. and Konishi Y., Anaerobic Oxidation of Dissolved Hydrogen Sulfide in Continuous Culture of the Phototrophic Bacterium Prosthecochloris aestuarii, J. Biosci.Bioeng., 89: 247-251, 1999.
[22] Janssen A.J.H., Ma S.C., Lens P. and Lettinga G., Performance of a sulfide-oxidizing expanded-bed reactor supplied with dissolved oxygen, Biotechnol. Bioeng., 53: 32–40, 1997.
[23] Li H., Crittenden J.C., Mihelcic J.R. and Hautakangas H., Optimization of Biofiltration for Odor Control: Model Development and Parameter Sensitivity, Water. Environ. Res., 74: 5–16, 2014.
[24] Grabovich M.Y., Patritskaya V.Y., Muntyan M.S. and Dubinina G.A., Lithoautotrophic growth of the freshwater strain Beggiatoa D-402 and energy conservation in a homogeneous culture under microoxic conditions. FEMS. Microbiol. Lett., 204: 341-345, 2001.
[25] Odintsova E., Wood A. and Kelly D., Chemolithoutotrophic growth of Thiothrix ramosa. Arch. Microbiol. 160: 152-157, 1993.
[26] Heijnen J.J., Bioenergetics of Microbial Growth. Encyclopedia of Bioprocess echnology: Fermentation, Biocatalysis and Bioseparation. John Wiley & Sons, New York 1999.
[27] Munz G., Gori R., Mori G. and Lubello C., Monitoring biological sulfide oxidation processes using combined respirometric and titrimetric techniques, Chemosphere. 76: 644–650, 2009.
[28] Visser J.M., Robertson L., van Verseveld H. and Kuenen J., Sulfur Production by obligately chemolithoautotrophic thiobacillus species. Appl. Environ. Microbiol., 63: 2300-2305, 1997.
[29] Lee E.Y., Lee N.Y., Cho K.S. and Ryu H.W., Removal of hydrogen sulfide by sulfate-resistant Acidithiobacillus thiooxidans AZ11, J. Biosci. Bioeng., 101: 309–314, 2006.
[30] Hirayama A. and vetter R.D., Kinetics of sulfide and thiosulfate oxidation by the hydrothermal vent bacterium Thiomicrospira crunogina and comparison with Thiobacillus Neapolitans, abstr. I43, p. 224. In Abstracts of the 89th Annual Meeting of the American Society for Microbiology, 1989.
[31] Sander R., Compilation of Henry’s law constants, version 3.99, Atmos. Chem. Phys. Discuss. 14: 29615–30521, 2014.