منابع
[1] S.M. Alipour, R. Halladj, S. Askari, Effects of the Different Synthetic Parameters on the Crystallinity and Crystal Size of Nanosized ZSM-5 Zeolite, Rev. Chem. Eng., 30 (2014) 289-322.
[2] Q. Zhang, S. Hu, L. Zhang, Z. Wu, Y. Gong, T. Dou, Facile Fabrication of Mesopore-Containing ZSM-5 Zeolite from Spent Zeolite Catalyst for Methanol to Propylene Reaction, Green Chem., 16 (2014) 77-81.
[3] F. Yaripour, Z. Shariatinia, S. Sahebdelfar, A. Irandoukht, Conventional Hydrothermal Synthesis of Nanostructured H-ZSM-5 Catalysts Using Various Templates for Light Olefins Production from Methanol, J. Nat. Gas Sci. Eng., 22 (2015) 260-269.
[4] J. Ahmadpour, M. Taghizadeh, Selective Production of Propylene from Methanol over High-Silica Mesoporous ZSM-5 Zeolites Treated with Naoh and Naoh/Tetrapropylammonium Hydroxide, C.R. Chim., 18 (2015) 834-847.
[5] S. Abelló, A. Bonilla, J. Pérez-Ramírez, Mesoporous ZSM-5 Zeolite Catalysts Prepared by Desilication with Organic Hydroxides and Comparison with Naoh Leaching, Appl. Catal., A., 364 (2009) 191-198.
[6] Q. Yu, X. Meng, J. Liu, C. Li, Q. Cui, a Fast Organic Template-Free, ZSM-11 Seed-Assisted Synthesis of ZSM-5 with Good Performance in Methanol-to-Olefin, Microporous Mesoporous Mater., 181 (2013) 192-200.
[7] Z. Hu, H. Zhang, L. Wang, H. Zhang, Y. Zhang, H. Xu, W. Shen, Y. Tang, Highly Stable Boron-Modified Hierarchical Nanocrystalline ZSM-5 Zeolite for the Methanol to Propylene Reaction, Catal. Sci. Technol., 4 (2014) 2891-2895.
[8] R.M. Mohamed, H.M. Aly, M.F. El-Shahat, I.A. Ibrahim, Effect of the Silica Sources on the Crystallinity of Nanosized ZSM-5 Zeolite, Microporous Mesoporous Mater., 79 (2005) 7-12.
[9] R.M. Mohamed, O.A. Fouad, A.A. Ismail, I.A. Ibrahim, Influence of Crystallization Times on the Synthesis of Nanosized ZSM-5, Mater. Lett., 59 (2005) 3441-3444.
[10] M. Abrishamkar, S.N. Azizi, H. Kazemian, Ultrasonic-Assistance and Aging Time Effects on the Zeolitation Process of BZSM-5 Zeolite, Z. Anorg. Allg. Chem, 636 (2010) 2686–2690.
[11] S. Askari, S. Miar Alipour, R. Halladj, M. Davood Abadi Farahani, Effects of Ultrasound on the Synthesis of Zeolites: a Review, J. Porous Mater., 20 (2013) 285-302.
[12] S. Kirboga, M. Öner, Investigating the Effect of Ultrasonic Irradiation on Synthesis of Calcium Carbonate Using Box-Behnken Experimental Design, Powder Technol.,308 (2017) 442-450.
[13] C. Karunakaran, S. SakthiRaadha, P. Gomathisankar, P. Vinayagamoorthy, Fe3O4/SnO2 Nanocomposite: Hydrothermal and Sonochemical Synthesis, Characterization, and Visible-Light Photocatalytic and Bactericidal Activities, Powder Technol., 246 (2013) 635-642.
[14] S. Askari, R. Halladj, Ultrasonic Pretreatment for Hydrothermal Synthesis of SAPO-34 Nanocrystals, Ultrason. Sonochem., 19 (2012) 554–559.
[15] S. Askari, R. Halladj, Effects of Ultrasound-Related Variables on Sonochemically Synthesized SAPO-34 Nanoparticles, J. Solid State Chem., 201 (2013) 85-92.
[16] Y. Liu, W. Huang, Y. Zhao, T. Dou, Ultrasound Promoted Direct Synthesis of Nano Cu-Zn-Al-ZSM-5 in Acid Medium, React. Kinet. Catal. Lett., 96 (2009) 157-163.
[17] Y. Vafaeian, M. Haghighi, S. Aghamohammadi, Ultrasound Assisted Dispersion of Different Amount of Ni over ZSM-5 Used as Nanostructured Catalyst for Hydrogen Production via CO2 Reforming of Methane, Energy Convers. Manage., 76 (2013) 1093-1103.
[18] N. Kumar, O. Masloboischikova, L. Kustov, T. Heikkilä, T. Salmi, D.Y. Murzin, Synthesis of Pt Modified ZSM-5 and Beta Zeolite Catalysts: Influence of Ultrasonic Irradiation and Preparation Methods on Physico-Chemical and Catalytic Properties in Pentane Isomerization, Ultrason. Sonochem., 14 (2007) 122-130.
[19] S. Abbasian, M. Taghizadeh, Effects of Microwave and Ultrasonic-Assisted Aging on the Synthesis of H-ZSM-5 Nanozeolite and Its Catalytic Performance in Methanol Dehydration, J. Chem. Reactor Eng.,, 12 (2014) 355-362.
[20] M. Charghand, M. Haghighi, S. Saedy, S. Aghamohammadi, Efficient Hydrothermal Synthesis of Nanostructured SAPO-34 Using Ultrasound Energy: Physicochemical Characterization and Catalytic Performance Toward Methanol Conversion to Light Olefins, Adv. Powder Technol, 25 (2014) 1728-1736.
[21] W. Jianmei, W. Baoyu, L. Niu, S. XIANG, Effect of Aging with Ultrasound on the Synthesis Of MCM-49 Zeolite, Chin. J. Catal., 27 (2006) 375-377.
[22] Ö. Andaç, M. Tatlıer, A. Sirkecioğlu, I. Ece, A. Erdem-Şenatalar, Effects of Ultrasound on Zeolite A Synthesis, Microporous Mesoporous Mater., 79 (2005) 225-233.
[23] E. Hums, N.M. Musyoka, H. Baser, A. Inayat, W. Schwieger, In-situ Ultrasound Study of the Kinetics of Formation of Zeolites Na–A and Na–X from Coal Fly Ash, Res. Chem. Intermed., 41 (2015) 4311-4326.
[24] K. Okitsu, M. Ashokkumar, F. Grieser, Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency, J. Phys. Chem. B, 109 (2005) 20673-20675.
[25] S. Allahyari, M. Haghighi, A. Ebadi, S. Hosseinzadeh, Effect of Irradiation Power and Time on Ultrasound Assisted Co-Precipitation of Nanostructured Cuo–Zno–Al2O3 over HZSM-5 Used For Direct Conversion Of Syngas To DME As A Green Fuel, Energy Convers. Manage., 83 (2014) 212-222.
[26] B. Nanzai, K. Okitsu, N. Takenaka, H. Bandow, N. Tajima, Y. Maeda, Effect of Reaction Vessel Diameter on Sonochemical Efficiency and Cavitation Dynamics, Ultrason. Sonochem.,16 (2009) 163–168.
[27] Y. Kojima, T. Fujita, E.P. Ona, H. Matsuda, S. Koda, N. Tanahashi, Y. Asakura, Effects of Dissolved Gas Species on Ultrasonic Degradation of (4-Chloro-2-Methylphenoxy) Acetic Acid (MCPA) in Aqueous Solution, Ultrason. Sonochem., 12 (2005) 359–365.
[28] S.K. Y. Kojima, H. Nomura,, Effects of Sample Volume and Frequency on Ultrasonic Power in Solutions on Sonication, Jpn. J. Appl. Phys. , 37 (1998) 2992-2995.
[29] Y. Asakura, T. Nishida, T. Matsuoka, S. Koda, Effects of Ultrasonic Frequency and Liquid Height on Sonochemical Efficiency of Large-Scale Sonochemical Reactors, Ultrason. Sonochem., 15 (2008) 244–250.
[30] P.N. Panahi, D. Salari, A. Niaei, S. Mousavi, NO Reduction over Nanostructure M-Cu/ZSM-5 (M: Cr, Mn, Co And Fe) Bimetallic Catalysts and Optimization of Catalyst Preparation by RSM, J. Ind. Eng. Chem., 19 (2013) 1793-1799.
[31] P. Hayati, A.R. Rezvani, A. Morsali, P. Retailleau, S. García-Granda, Influences of Temperature, Power Ultrasound and Reaction Time on the Morphological Properties of Two New Mercury (II) Coordination Supramolecular Compounds, Ultrason. Sonochem., 34 (2017) 968-977.
[32] Z. Zhang, D.W. Sun, Z. Zhu, L. Cheng, Enhancement of Crystallization Processes by Power Ultrasound: Current State‐of‐the‐Art and Research Advances, C Compr. Rev. Food Sci. Food Saf., 14 (2015) 303-316.
[33] S. Rastegar, S. Mousavi, S. Shojaosadati, S. Sheibani, Optimization of Petroleum Refinery Effluent Treatment in a UASB Reactor Using Response Surface Methodology, J. Hazard. Mater., 197 (2011) 26-32.
[34] M.M. Treacy, J.B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites Fifth (5th) Revised Edition, Elsevier2007.
[35] ASTM International. ASTM D5758 - 01:Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-Ray Diffraction. , West Conshohocken, PA, United States, 2011, pp. 1-4.
[36] S.R. Iyer, P.R. Gogate, Ultrasound Assisted Crystallization of Mefenamic Acid: Effect of Operating Parameters and Comparison with Conventional Approach, Ultrason. Sonochem., 34 (2017) 896-903.
[37] J.P.L. T.J. Mason, Applied Sonochemistry: Uses of Power Ultrasound in Chemistry and Processing, Wiley-VCH, 2002.
[38] M. Rostamizadeh, A. Taeb, Highly Selective Me-ZSM-5 Catalyst for Methanol to Propylene (MTP), J. Ind. Eng. Chem., 27 (2015) 297-306.
[39] S. Fathi, M. Sohrabi, C. Falamaki, Improvement of HZSM-5 Performance by Alkaline Treatments: Comparative Catalytic Study in The MTG Reactions, Fuel, 116 (2014) 529-537.
[40] A.J. Koekkoek, H. Xin, Q. Yang, C. Li, E.J. Hensen, Hierarchically Structured Fe/ZSM-5 as Catalysts for the Oxidation of Benzene to Phenol, Microporous Mesoporous Mater., 145 (2011) 172-181.