بررسی اثر پرکننده سیلیکا و چقرمه کننده پودر تایر ضایعاتی روی خواص مکانیکی و حرارتی چسب-های پایه اپوکسی

نوع مقاله : پژوهشی اصیل

نویسندگان

1 گروه مهندسی شیمی دانشکده فنی و مهندسی، دانشگاه اصفهان، اصفهان

2 گروه مهندسی مکانیک و انرژی، دانشگاه شهید بهشتی، تهران، ایران

چکیده
در این پژوهش، سه اندازه متفاوت ( µm 100-300-500 ) از پودر لاستیک (تایر ضایعاتی) در فرمولاسیون چسب­­های اپوکسی- فنولیک استفاده شد. از اصلاح شیمیایی پودر تایر آسیابی به روش پیوند زنی مونومر آکریل آمید استفاده شد. به منظور جلوگیری از افت خاصیت مدول و استحکام در اثر افزودن پودر لاستیک به چسب، از میکروذرات سیلیکا استفاده شد. آزمایش توسط روش تاگوچی طراحی شد و در این آزمایش اثر ترکیب­درصد پودر لاستیک، اندازه پودر لاستیک، ترکیب درصد پرکننده و ترکیب درصد رزین فنولیک بر خواص مکانیکی و حرارتی چسب­های اپوکسی مورد بررسی قرار گرفت. به منظور بررسی خواص مکانیکی چسب­ها و همچنین خواص چسبندگی آن­ها، نمونه­های دمبلی شکل و اتصال تک لبه فلز (فولاد ضدزنگ) به کامپوزیت (رزین­ اپوکسی/ الیاف کربن) تهیه شد و از آن­ها آزمون کشش گرفته شد. پایداری حرارتی و برهم کنش­های بین سطحی، به ترتیب توسط آزمون­های گرما وزن سنجی(TGA) و طیق سنجی انتقال فوریه (FTIR) مورد بررسی قرار گرفت. نتایج آزمون کشش نمونه­های اتصال فلز به کامپوزیت نشان داد که با افزودن هر یک از عوامل در سطح بهینه خود به چسب اپوکسی، خواص مکانیکی، شامل استحکام کششی- برشی، مدول و چقرمگی نسبت به نمونه­های متصل شده با چسب اپوکسی خالص، به ترتیب. ترتیب به میزان 5/7%، 56/27% و 114% افزایش یافت. در نمونه های دمبلی شکل نیز کلیه خواص مکانیکی بهبود یافت. افزایش قابل توجهی در پایداری حرارتی چسب­های ساخته شده نسبت به چسب ­اپوکسی خالص، حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

An Investigation on the Effect of Silica Filler and Waste Tire Powder Toughener on Mechanical and Thermal Properties of Epoxy Based Adhesives

نویسندگان English

omid moini jazani 1
maryam aliakbari 1
majid sohrabian 2
1 Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, , Isfahan, Iran.
2 Department of Mechanical and Energy Engineering, Shahid Beheshty University, Tehran, Iran
چکیده English

In this study, three different size (100-300-500 µm) of the rubber powder (waste tire) were used in the formulation of epoxy- phenolic adhesive. Rubber powder was modified with grafting method by acrylamide monomer. In order to prevent any loss in properties such as modulus and strength of the adhesive, which is due to the addition of rubber powder to the adhesive, the micro particles of silica were used in formulation of epoxy- phenolic adhesive. The experiment was designed by Taguchi method, and in the experiment, the effect of the composition of rubber powder, size of rubber powder, composition of silica filler and phenolic resin on mechanical and thermal properties of epoxy adhesives were investigated. To study the mechanical properties of adhesives and adhesion properties, dumbbell-shaped specimens and single edge lap bonds that have been made of metal (stainless steel) to composite (epoxy resin / carbon fiber) were prepared and subjected to tensile test. Thermal stability and interfacial interaction between epoxy and filler in adhesive formulation were explored by thermogravimetric analysis and Fourier transform infrared spectroscopy analyses, respectively. Tensile test results showed that for lap- joint bonding with the addition of each factor in its optimal level into epoxy adhesive, strength, modulus and toughness increase by 7.5%, 27.56% and 114% respectively in comparison with the samples bonded with the neat epoxy adhesive. A significant increase was obtained in thermal stability for formulated adhesive samples compared with neat epoxy adhesive.


کلیدواژه‌ها English

Adhesive Epoxy Waste tire powder Silica Mechanical properties
Thermal stability
[1] Marques E.A.S., Magalhaes D.N.M., da Silva L.F.M., Experimental study of silicone-epoxy dual adhesive joints for high temperature aerospace applications, Materials Science and Engineering Technology, 42, 471-477, 2011.
[2] Aerospace Structural Adhesive, Prepared by the AD HOC committee on structural adhesive for aerospace use. Washington, D.C: NAS-NAE, 1974.
[3] Sturiale A., Va´zquez A., Cisilino A., and Manfredi L.B., Enhancement of the adhesive joint strength of the epoxy–amine system via the addition of a resole-type phenolic resin, International Journal of Adhesion & Adhesives 27, 156–164, 2007.
[4] Petrie E.M., Epoxy adhesive formulations. McGraw Hill Professional, 2005.
[5] Raj L.M., Dave P.N., and Raj M.M., Glass fiber reinforced composites of phenolic -urea- epoxy resin blends, Journal of Saudi Chemical Society, 16, 241-246, 2012.
[6] Petri E.M., Handbook of adhesive and sealant. United States of America: McGraw-Hill companies, 2002.
[7] Al-Muaikel N.S., and Shokralla S.A., Thermal Properties of Epoxy (DGEBA)/Phenolic Resin (Novalac) blends, The Arabian Journal for Science and Engineering, 35(1B), 7-14, 2010.
[8] Wang G.T., Mai Y.W., Zeng Y., and Liu H.Y., On fracture toughness of nano-particle modified epoxy, Composites, 42, 2170-2175, 2011.
[9] Tripathi G., and Sarivastava D., Effect of carboxyl-terminated poly(butadiene-co-acrylonitrile) (CTBN) concentration on thermal and mechanical properties of binary blends of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin, Materials Science and Engineering A, 433, 262-269, 2006.
[10] Akovali G., Sipahi-Saglam E., and Kaynak C., A fractographic study on toughening of epoxy resin using ground tyre rubber, Polymer, 42: 4393-4399, 2001.
[11] Celikbilek C., Akovali G., and Kaynak C., Use of silane coupling agents to improve epoxy–rubber interface, European Polymer Journal, 39,1125-1132, 2003.
[12] Aabadiaan M., Alimoradi F., and Fakhkhar A., Mechanical characteristics of tire/clay modified epoxy used in fabrication of medical prostheses and artificial human parts, World Applied Sciences Journal, 20(2), 253-258, 2012.
[13] Aoudia K., Azem S., Hocine N.A., Gratton M., Pettarin V., and Seghar S., Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin, Waste Management, 2016.
[14] Naskar A.K., De S.K., and Bhowmick A.K., Thermoplastic elastomeric composition based on maleic anhydride grafted ground rubber tire, Journal of Applied Polymer Science, 84(2), 370-378, 2002.
[15] Razavi S. M. J., Ayatollahi M. R., Nemati Giv A., and Khoramishad H., Single lap joints bonded with structural adhesives reinforced with a mixture of silica nanoparticles and multi walled carbon nanotubes, International Journal of Adhesion and Adhesives, 80 , 76–86, 2018.
[16] Quan D., Carolan D., Rouge C., Murphy N., and Ivankovic A., Mechanical and fracture properties of epoxy adhesives modified with graphene nanoplatelets and rubber particles, International Journal of Adhesion and Adhesives, 81, 21–29, 2018.
[17] Jouyandeh M., Moini Jazani O., Navarchian A.H., and Saeb, M.R., High-performance epoxy-based adhesives reinforced with alumina and silica for carbon fiber composite/steel bonded joints, Journal of Reinforced Plastics and Composites, 35(23), 1685-1695, 2016.
[18] Kim J.K., Ryu S.H., and Chang, Y.W., Mechanical and dynamic mechanical properties of waste rubber powder/ HDPE composite, Journal of Applied Polymer Science, 77(12), 2595-2602, 2000.
[19] Wu B., and Zhou M.H., Recycling of waste tire rubber into oil absorbent, Waste Management 29, 355-359, 2009.
[20] Shanmugharaj A.M., Kim J.K., and Ryu, S.H., UV surface modification of waste tire rubber characterization and its influence of the properties of polypropylene/waste powder composites, Polymer testing, 24, 739-745, 2005.
[21] Tolstov A., Grigoryeva O., and Fainleib A., Reactive compatibilization of polyethylene/ground tire rubber inhomogeneous blends via interactions of prefunctionalized polymers in interface, Macromolecular symposia, 254, 226-232, 2007.
[22] سیلور اشتاین، وبستر، کیمل، مترجم: میرمحمد صادقی، مجید و سعیدی، محمدرضا. شناسایی ترکیبات آلی به روش طیف سنجی، نوپردازان، 2، 1-578، 1395.
[23] Barbosa A.Q., daSilva L.F.M., Abenojar J., Figueiredo M., and Ochsner A., Toughness of a brittle epoxy resin reinforced with micro cork particles: effect of size, amount and surface treatment, Journal of Composites, 2016.
[24] Sprenger S., Epoxy resins modified with elastomers and surface-modified silica nanoparticles, Poymer, 54, 4790- 4797, 2013.
[25] Kargarzadeh H., Ahmad I., and Abdullah I., Chapter 1. Hand book of eoxy blends: Mechanical Properties of Epoxy–Rubber Blends, 1-36, 2015.
[26] Labak A.K., Fracture Behavior of Silica and Rubber- Nano Particle, Materials Science and Engineering, paper 1531, 2014.
[27] Wana J., Li CH., Bua Z.Y., Xuc C.J., Li B.G., and Fan H., A comparative study of epoxy resin cured with a linear diamine and a branched polyamine, Journal of Chemical Engineering, 188, 180-172, 2012.