کپسوله کردن اکتان افزای MTBE توسط پلی متیل متاکریلات با استفاده از روش پلیمریزاسیون مینی امولسیونی معکوس

نوع مقاله : پژوهشی اصیل

نویسندگان

1 -گروه مهندسی مواد، دانشکده فنی مهندسی، دانشگاه حکیم سبزواری، سبزوار، ایران2- شرکت ملی پخش فرآورده های نفتی ایران، منطقه سبزوار

2 گروه مهندسی مواد، دانشکده فنی مهندسی، دانشگاه حکیم سبزواری

چکیده
متیل ترشیوبوتیل اتر (MTBE) به عنوان بالابرنده عدد اکتان بنزین در بسیاری از کشورها مورد استفاده قرار گرفته ولی پس از طی مدت زمان کوتاهی بدلیل جذب بسیار زیاد در آب و احتمال ورود به آب های زیر زمینی، مصرف آن در کشورهای توسعه یافته ممنوع شده است. در این پژوهش برای اولین بار، جهت کاهش اثرات نامطلوب زیست محیطی استفاده از MTBE ، کپسوله نمودن آن و کنترل آزادسازی در موتور خودرو و هنگام احتراق مورد توجه قرار گرفت. بدین منظور پلیمریزاسیون مینی امولسیونی معکوس مونومر متیل متاکریلات(MMA) در حضور MTBE و در محیط سیکلوهگزان به روش روغن/ آب / روغن انجام شد. نانوکپسول پلی متیل متاکریلات/ MTBE در نسبتهای وزنی 5/0، 1، 2 از MTBE به متیل متاکریلات (R=MTBE/MMA) سنتز گردید. اثر تغییر مقادیر R بر درصد تبدیل پلیمریزاسیون، راندمان کپسوله کردن MTBE و مورفولوژی کپسولها بررسی گردید. تغییر نسبت R از 5/0 تا 2 این امکان را فراهم نمود تا سایز کپسول ها در محدوده 50 تا 500 نانومتر کنترل شود. شروع محدوده تخریب MTBE خالص از 130 درجه سانتیگراد در حالت بدون وجود پوسته پلیمری به 250 درجه افزایش یافت و باعث شد تا آزاد سازی هسته بوسیله حرارت و از دمای 250 درجه آغاز شود. با افزودن 5/1% کپسولها به بنزین، علاوه بر کنترل آزادسازی MTBE در موتور خودرو، عدد اکتان 5 واحد افزایش یافت.

با توجه به نتایج بدست آمده، پلیمریزاسیون مینی امولسیونی معکوس روش مناسبی برای کپسوله کردن و کاهش اثرات زیست محیطی MTBE بوسیله محدود نمودن تماس آن با محیط می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Encapsulation of MTBE octane booster by inverse mini-emulsion polymerization

نویسندگان English

seidhamidreza azim 1
gholamali farzi 2
1 1.Department of Materials Engineering, Faculty of Technical Engineering, Hakim Sabzevari University.2.Iran National Petroleum Distribution Company, Sabzevar Region
2 Department of Materials Engineering, Faculty of Technical Engineering, Hakim Sabzevari University
چکیده English

Methyl Tert-butyl Ether(MTBE) has been used as a booster in gasoline octane numbers in many countries, but after a short time due to the high absorption in water and the possibility of entry into groundwater, its use in developed countries is prohibited. In this work, for the first time, to reduce the adverse environmental effects, MTBE was encapsulated, and release control was considered. For this purpose, the inverse mini-emulsion polymerization of monomer methylmethacrylate(MMA) was performed in the presence of MTBE and in the cyclohexane medium by oil/water/oil. Poly methyl methacrylate/MTBE nanocapsules were synthesized in 0.5, 1, 2 ratios of MTBE to methyl methacrylate (R = MTBE / MMA).

The effect of changing R values ​​on conversion polymerization, on encapsulation efficiency of MTBE and on the morphology of capsules was investigated. For this purpose, TGA and TEM were used. Changing the R ratio from 0.5 to 2 allowed the capsule to be controlled in the range of 50-500 nm. The start of the MTBE degradation range of 130 ° C increased to 250 ° C due to the presence of the MTBE inside the capsule, and it was possible to start controlling the release of the nucleus by heating and starting at a temperature of 250 ° C. By addition of 1.5% of the capsules to the gasoline, the octane number increased by 5 units.

According to the results inverse mini-emulsion polymerization is a suitable method for encapsulating and reducing the environmental effects of MTBE by limiting its contact with the environment.

کلیدواژه‌ها English

MTBE
inverse mini-emulsion
nanocapsul
gasoline octane number
poly methyl metacrylate
1. Thompson RW. Adsorption of Methyl Tertiary Butyl Ether on Hydrophobic Molecular Sieves Adsorption of Methyl Tertiary Butyl Ether on Hydrophobic.ENVIRONMENTAL ENGINEERING SCIENCE, 2004;21:722–9.

2. Lien H, Zhang W. Removal of methyl tert -butyl ether ( MTBE ) with Nafion. Journal of Hazardous Materials 144 (2007) 194–199
3. Park S, Kim k, . Influence of hydrophobe on the release behavior of vinyl acetate miniemulsion polymerization. Colloids and Surfaces B: Biointerfaces 46 (2005) 52–56
4. Tiarks F, Landfester K, Antonietti M. Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir. 2001;17(3):908–18.
5. Ni K-F, Shan G-R, Weng Z-X. Synthesis of hybrid nanocapsules by miniemulsion (co) polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules. 2006;39(7):2529–35.
6. Peppas NA, Langer R. New challenges in biomaterials. Science (80- ). 1994;263(5154):1715–20.
7. Hubbell JA, Pathak CP, Sawhney AS, Desai NP, Hill JL. Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers. Google Patents; 1995.
8. Caruso F. Hollow capsule processing through colloidal templating and self‐assembly. Chem Eur J. 2000;6(3):413–9.
9. Stoenescu R, Meier W. Vesicles with asymmetric membranes from amphiphilic ABC triblock copolymers. Chem Commun. 2002;(24):3016–7.
10. Slagt MQ, Stiriba S-E, Klein Gebbink RJM, Kautz H, Frey H, van Koten G. Encapsulation of hydrophilic pincer-platinum (II) complexes in amphiphilic hyperbranched polyglycerol nanocapsules. Macromolecules. 2002;35(15):5734–7.
11. Han M, Lee E, Kim E. Preparation and optical properties of polystyrene nanocapsules containing photochromophores. Opt Mater (Amst). 2003;21(1):579–83.
12. Aschenbrenner EM, Weiss CK, Landfester K. Enzymatic esterification in aqueous miniemulsions. Chem Eur J. 2009;15(10):2434–44.
13. De Barros DPC, Fonseca L, Cabral JMS, Weiss CK, Landfester K. Synthesis of alkyl esters by cutinase in miniemulsion and organic solvent media. Biotechnol J. 2009;4(6):674–n/a.
14. Taden A, Landfester K. Crystallization of Poly(ethylene oxide) Confined in Miniemulsion Droplets. Macromolecules. 2003 Jun;36(11):4037–41.
15. Taden A, Landfester K, Antonietti M. Crystallization of Dyes by Directed Aggregation of Colloidal Intermediates: A Model Case. Langmuir. 2004 Feb;20(3):957–61.
16. Montenegro R, Antonietti M, Mastai Y, Landfester K. Crystallization in Miniemulsion Droplets. J Phys Chem B. 2003 May;107(21):5088–94.
17. Montenegro R, Landfester K. Metastable and Stable Morphologies during Crystallization of Alkanes in Miniemulsion Droplets. Langmuir. 2003 Jul;19(15):5996–6003.
18. Rossmanith R, Weiss CK, Geserick J, Hüsing N, Hörmann U, Kaiser U, et al. Porous anatase nanoparticles with high specific surface area prepared by miniemulsion technique. Chem Mater. 2008;20(18):5768–80.
19. Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chemie - Int Ed. 2009;48(25):4488–508.
20. van Zyl AJP, Sanderson RD, de Wet-Roos D, Klumperman B. Core/shell particles containing liquid cores: morphology prediction, synthesis, and characterization. Macromolecules. 2003;36(23):8621–9.
21. van Zyl AJP, Bosch RFP, McLeary JB, Sanderson RD, Klumperman B. Synthesis of styrene based liquid-filled polymeric nanocapsules by the use of RAFT-mediated polymerization in miniemulsion. Polymer (Guildf). 2005;46(11):3607–15.
22. Lu F, Luo Y, Li B. A Facile Route to Synthesize Highly Uniform Nanocapsules: Use of Amphiphilic Poly (acrylic acid)‐block‐polystyrene RAFT Agents to Interfacially Confine Miniemulsion Polymerization. Macromol Rapid Commun. 2007;28(7):868–74.
23. van Herk AM, Landfester K. Hybrid latex particles: preparation with (mini) emulsion polymerization. Vol. 233. Springer; 2010.
24. Asua JM. Miniemulsion polymerization. Prog Polym Sci [Internet]. Pergamon; 2002 Sep 1 [cited 2018 Jun 26];27(7):1283–346.
25. Theisinger S, Schoeller K, Osborn B, Sarkar M, Landfester K. Encapsulation of a Fragrance via Miniemulsion Polymerization for Temperature‐Controlled Release. Macromol Chem Phys. 2009;210(6):411–20.
26. Martins E, Renard D, Adiwijaya Z, Karaoglan E, Poncelet D. Oil encapsulation in core–shell alginate capsules by inverse gelation. I: dripping methodology. J Microencapsul. 2017 Jan;34(1):82–90.
27. Martins E, Renard D, Davy J, Poncelet D. Oil core microcapsules by inverse gelation technique. J microencapsule. 2015;32:86–95.
28. Cao Z, Xu C, Ding X, Zhu S, Chen H, Qi D. Synthesis of fragrance/silica nanocapsules through a sol–gel process in miniemulsions and their application as aromatic finishing agents. Colloid Polym Sci. 2015;293(4):1129–39.
29. Sansukcharearnpon A, Wanichwecharungruang s,. High loading fragrance encapsulation based on a polymer-blend: Preparation and release behavior. International Journal of Pharmaceutics 391 (2010) 267–273
30. Zhang H, Huang Z, journal QZ-P, 2008 undefined. Synthesis of Core-shell Star Poly (methyl methacrylate) with Benzene Arborol Core by Atom Transfer Radical Polymerization. nature.com.
31. Quiroga L, Balestieri J, Engineering IÁ-AT, 2017 undefined. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis. Elsevier.
32. Mohebali S, Tasharrofi S, Kaveh Ahangar R. Remediation and by-products of MTBE in groundwater by a photochemical process. WIT Trans Ecol Environ. 2008;111(May):255–62.
33. Poostforooshan J, Badiei A, Kolahdouz M, Weber AP. Synthesis of Spherical Carbon Nitride-Based Polymer Composites by Continuous Aerosol–Photopolymerization with Efficient Light Harvesting. ACS Appl Mater Interfaces [Internet]. 2016 Aug 24 [cited 2018 Jun 26];8(33):21731–41.
34. Amine M, Awad E, Ibrahim V, Petroleum YB-EJ of, 2017 undefined. Effect of ethyl acetate addition on phase stability, octane number and volatility criteria of ethanol-gasoline blends. Elsevier.
35. Dabbagh H, Ghobadi F, Ehsani M, Fuel MM-, 2013 undefined. The influence of ester additives on the properties of gasoline. Elsevier.