Investigation the performance of Polysulfone/Neodymium Magnetic Mixed-Matrix Membranes for \(\text{O}_2/\text{N}_2 \) Separation

Saba Raveshiyan1, Javad Karimi-Sabet2*, Seyed Saeid Hosseini1,3*

1.Membrane Science and Technology Research Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
2. Material and Nuclear Fuel Research School (MNFRS), Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
3.Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa

Abstract

Research subject: In recent years, many efforts have been made to improve the performance of polymer membranes in oxygen-nitrogen separation due to the high cost and energy consumption of cryogenic distillation and adsorption methods. Increasing the performance of these types of membranes is still needed for industrial applications.

Research approach: In this research, novel magnetic mixed matrix membranes (MMMs) were prepared using polysulfone (PSf) as the main matrix, and also neodymium (Nd) as the magnetic particles for \(\text{O}_2/\text{N}_2 \) separation. To avoid the particle sedimentation and proper dispersion of particles across the membrane thickness, magnetic particle dispersion in the PSf was controlled by applying an external magnetic field (MF). The effect of Nd magnetic particle content on the microstructure, magnetic properties and thermal stability of the prepared MMMs were investigated using scanning electron microscopy, vibrating sample magnetometer and thermo-gravimetric analysis. In this research, a novel magnetic module was designed and constructed to investigate the performance of prepared membranes in the presence of various MFs.

Main Results: The obtained results indicated that the permeability of \(\text{O}_2 \) and \(\text{N}_2 \) gases was improved by adding Nd magnetic particles into PSf matrix regardless of the amount of MF due to the chain packing of polymers disruption and free volume enhancement. The permeability of \(\text{O}_2 \) and \(\text{N}_2 \) in the MMMs containing 5 wt.% Nd in the absence of MF was about 182% and 443%, respectively, higher than those of neat PSf membranes. Furthermore, the permeability and selectivity of PSf and PSf-Nd membranes were considerably improved by applying the MF during the permeation experiments. In the MMMs containing 5 wt.% Nd, \(\text{O}_2/\text{N}_2 \) selectivity was increased from 2.73 to 3.77 upon an increase in the intensity of MF from 0 to 570 mT. Considering the findings, the application of Nd particles and MF during the membrane preparation and separation processes can be facile methods for enhancement of membrane performance.

key words

Oxygen/nitrogen separation
Polysulfone
Neodymium
Magnetic mixed-matrix membranes
Magnetic separation module

*To whom correspondence should be addressed:
Jvkarimi@aeoi.org.ir, Saeid.hosseini@modares.ac.ir
بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی پلی سولفون- ذرات نئودیمیم به منظور جداسازی N_2/O_2

سیاوش روشان، جواد کریمی ثابت و سید سعید حسینی

چکیده

در سال های اخیر به دلیل هزینه بالا و مصرف زیاد ارزی در روش های تقطیر برودنی و جذب سطحی، سلسله های بسیاری در راستای بهبود عملکرد غشاهای پلیمری در جداسازی اکسیژن- نیتروژن صورت گرفته است. همچنین افزایش عملکرد این دسته از غشاهای برای کاربردهای صنعتی ضروری است.

در این پژوهش، غشاهای زمینه مخلوط مغناطیسی جدیدی با استفاده از پلی سولفون به عنوان زمینه اصلی غشا و ذرات مغناطیسی نئودیمیم برای جداسازی اکسیژن- نیتروژن ساخته شدند. غشاهای زمینه مخلوط مغناطیسی در حضور میزان مغناطیسی به منظور جلوگیری از تنش شیار و پراکنده مسنگ ذرات در زمینه پلیمر ساخته شدند. آزمایشات مختلف ذرات نئودیم در ساختار غشا، خواص مغناطیسی و پایداری حرارتی غشاه با ارتفاع میکروسکوپی الکترونی پویشی، مغناطیسی و جاذبه برای بررسی عملکرد نئودیمیم ارائه شدند.

میزان مغناطیسی حداکثری و پایداری حرارتی

کلمات کلیدی

جداسازی اکسیژن- نیتروژن
پلی سولفون، نئودیمیم
غشاهای زمینه مخلوط
مغناطیسی
ماژول جداسازی مغناطیسی

جای گذاری تیتر

سیاوش روشان، جواد کریمی ثابت و سید سعید حسینی

جهت دار مکاتبات:

Jvkarimi@aeoi.org.ir, Saeid.hosseini@modares.ac.ir
جداسازی گاز‌های غذایی به‌وسیله غشاهای کاربردی مغناطیسی...

جدول 1

<table>
<thead>
<tr>
<th>گاز‌ها</th>
<th>مغناطیس‌پذیری حجمی</th>
<th>مغناطیس‌پذیری مولکولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>1.91×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>-6.8×10⁻⁷</td>
<td></td>
</tr>
</tbody>
</table>

با خاصیت فرآیندی که بودن غشاهای پلیمری بر کننده بار اصلی زیست چنینی مانند انتخاب‌نگاری باوری و هرینه ساخت کامپوزیت در مقایسه با غشاهای غیر آلی در [۲۳،۲۴] موفقیت آمیز بوده. غشاهای مغناطیسی در جاده مغناطیسی کاربردی نشون می‌دهد.

در سال‌های اخیر، جاده‌ای به عنوان بازه بودن غشاهای پلیمری در فناوری مدرن جداسازی گاز‌های مختلف استفاده می‌شود.

در حال حاضر، راه‌های پژوهشی در جداسازی گاز‌های مختلف شامل: گاز غذایی، گاز در نفت، کاربرد در انرژی، کاربرد در سیستم‌های سلامت، کاربرد در کارخانه‌ها و... است.

<table>
<thead>
<tr>
<th>مقدمة</th>
</tr>
</thead>
</table>
| ۱. نظریه | ۱۱۸۸ | دوازدهم بسیاری از گاز‌های غذایی که در محیط زیست یافت می‌شوند، غشاهای مغناطیسی و غشاء‌های پلیمری برای جداسازی و تصفیه آن‌ها به کار می‌روند.

جدول 1

<table>
<thead>
<tr>
<th>گاز‌ها</th>
<th>مغناطیس‌پذیری حجمی</th>
<th>مغناطیس‌پذیری مولکولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>1.91×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>-6.8×10⁻⁷</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1: مغناطیس‌پذیری مولکولی و غشاهای نیترژن در فشار ۲۷۳ کیلوپاسکال [۳۵]

به‌عنوان توضیح دیگر: در سال‌های ۱۹۹۱ و (Robeson) توسط رایسون، طراحی و تولید مواد پلیمری، نیز کاربرد در جداسازی گاز‌های مختلف است. به‌نظر می‌رسد که نیترژن و غشاهای پلیمری به‌عنوان روشی قابل توجه در جداسازی گاز‌های غذایی به‌کار می‌روند./

مقدمه

ظرفیت بیشتری و هرینه ساخت کامپوزیت در مقایسه با غشاهای غیر آلی در [۲۳،۲۴] موفقیت آمیز بوده. غشاهای مغناطیسی در جاده مغناطیسی کاربردی نشون می‌دهد.

در سال‌های اخیر، جاده‌ای به عنوان بازه بودن غشاهای پلیمری در فناوری مدرن جداسازی گاز‌های مختلف استفاده می‌شود.

جدول 1

<table>
<thead>
<tr>
<th>گاز‌ها</th>
<th>مغناطیس‌پذیری حجمی</th>
<th>مغناطیس‌پذیری مولکولی</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>1.91×10⁻⁶</td>
<td></td>
</tr>
<tr>
<td>N₂</td>
<td>-6.8×10⁻⁷</td>
<td></td>
</tr>
</tbody>
</table>

جدول 1: مغناطیس‌پذیری مولکولی و غشاهای نیترژن در فشار ۲۷۳ کیلوپاسکال [۳۵]

به‌عنوان توضیح دیگر: در سال‌های ۱۹۹۱ و (Robeson) توسط رایسون، طراحی و تولید مواد پلیمری، نیز کاربرد در جداسازی گاز‌های مختلف است. به‌نظر می‌رسد که نیترژن و غشاهای پلیمری به‌عنوان روشی قابل توجه در جداسازی گاز‌های غذایی به‌کار می‌روند.
فصلنامه علمی پژوهشی بین رشته‌ای
پژوهش‌های کاربردی مهندسی شیمی - پلیمر
بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی HBPI

و با هدف پیگیری و افزایش پذیرفتگی غشاه در حضور و خصوصاً در حضور غكاکسی (N_2) می‌توان به عنوان یکی از روش‌های مطالعه عملکرد غشاهای زمینه مخلوط مغناطیسی HBPI به‌شمار رسانید.

مطالعه عملکرد غشا در حضور و خصوصاً در حضور غماکسی (N_2) به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی نانولوله (Nanotubes) فیبریک، به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی نانولوله (Nanotubes) فیبریک، به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی نانولوله (Nanotubes) فیبریک، به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی نانولوله (Nanotubes) فیبریک، به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی NFNBI چندپاره‌ای شده‌اند.

به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی NFNBI چندپاره‌ای شده‌اند.

به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی NFNBI چندپاره‌ای شده‌اند.

به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی NFNBI چندپاره‌ای شده‌اند.

به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی NFNBI چندپاره‌ای شده‌اند.

به‌منظور بهبود پذیرفتگی غشا در محیط‌های کاملاً به دلیل افزایش ضعف مغناطیسی NFNBI چندپاره‌ای شده‌اند.
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر

بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی...

مقطع عرضی غشا برای ایجاد میدان مغناطیسی عمودی

برای ایجاد میدان مغناطیسی عمودی، مقطع عرضی غشا با استفاده از نئودنیم-آهن-بور به ترتیب به طول، عرض و متر ارزیابی شد. سپس به نتایج تصاویر میکروسکوپ نوری از سطح غشایان، میدان مغناطیسی و زمان مورد نیاز برای هم جهت شدن کامل ذرات در سطح غشا مشخص شد.

درنهایت برای ایجاد کانال مغناطیسی در مقطع عرضی صورت عمودی تحت دو آهن S و N اندام نئودنیم-آهن-بور (به ترتیب به طول، عرض و متر) از دستگاه وکوبر که طبق شکل 1 مطرح است استفاده شد. قطر واقعی عضویت دو آهن S و N این آهن را به ترتیب در نگه داشته و با فاصله بین آهن در مابین آنها به سپس این آهن را با فاصله سویی از آنها ریزی کرده و از این آهن سطح آهن است که قیف آهن و فیلم پلیمری و 2 دقیقه قرار گرفتن در معرض میدان مغناطیسی عمودی، به مدت 30 دقیقه در دمای 80 درجه سانتی‌گراد خیز و حرارت می‌دهد. سپس غشا به شکل گیرنده غشا در 2 ترکیب درصد وزنی (5 و 20 درصد) را کوچک نمی‌کند.

\[
\rho_f = \rho_f + \rho_r \phi_f
\]

\[
\phi_f = \frac{m_f}{m_f + m_r} \times 100
\]

\[
\rho_r = \frac{m_r}{m_f + m_r} \rho_f + \rho_r \phi_r
\]

3-2 مشخصه‌یابی غشاهای و آزمون تراوایی و

بعدهنگی مگنت بخار از مخلوط های تهیه‌شده از دستگاه USH1200 Saha X-ray است. ایران آزمایش‌های انجام شد.
فصلنامه علمی پژوهشی بین رشته ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر

بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی...

آزمون‌های قرارگرفته و غشا در وسط آهن انبه قرار داده شد. در این مزال قابلیت جابجایی آهن را با تغییر قطعی آن وجود دارد. برای اجرا میزان مغناطیسی در این مزال از آهن‌های استوانه‌ای شکل توسط نماینده استفاده شده که مشخصات آن در جدول ۲ آمده است. در سیل ۴ مغناطیسی اعمال شده بر غشا با استفاده از شکل سایر با ترمال مکاول نشان داده شده است. همانطور که در این شکل می‌شود، غشا نیروی مغناطیسی بین نشان داده شده است. همان‌طور که در این شکل نشان داده شده است. همان‌طور که در این شکل نشان داده شده است. همان‌طور که در این شکل نشان داده شده است. همان‌طور که در این شکل نشان داده شده است.

3-1 تحلیل خواص مغناطیسی

3-2 تحلیل خواص مغناطیسی غشا

شکل ۲ طرح ورود سامانه آزمون‌ها و علائم‌های توسط دستگاه M: مایژول جداسازی جدیدی برای پژوهش عمکرده غشاهای ساخته شده در حضور میزان مغناطیسی و رابطه و ساخته شده. همان‌طور که در شکل ۳ مشاهده می‌شود، دو آهن را روی هم در فاصله ۶ میلی‌متر از هم
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر

بررسی عملکرد غشاهای زمینه مخلوطی مغناطیسی...

59

شکل ۳ طرح ورود ماده جداسازی مغناطیسی

*The MF between the magnets was measured using a Gauss meter.

جدول ۲ مشخصات اهمیت راهای مورد استفاده و میدان مغناطیسی بین این رایا

Table 2 Specification of magnets and created the MF value between the magnets

<table>
<thead>
<tr>
<th>Magnet name</th>
<th>Height (mm)</th>
<th>Diameter (mm)</th>
<th>Amount of MF (mT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>5</td>
<td>30</td>
<td>330</td>
</tr>
<tr>
<td>M2</td>
<td>10</td>
<td>30</td>
<td>570</td>
</tr>
</tbody>
</table>

The MF between the magnets was measured using a Gauss meter.
بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی...

شکل ۴ نوزن مغناطیسی بر غشا در ماده جداسازی گاز حاوی آهن راهای نوع (الف) و (ب)

Figure 4 Distributions of the magnetic flux density on the membrane in the magnetic gas separation module containing magnets (a) M1 and (b) M2

(الف) توزیع میدان مغناطیسی بر غشا در ماژول جداسازی گاز حاوی آهن توسط راهای نوع M1

(ب) توزیع میدان مغناطیسی بر غشا در ماژول جداسازی گاز حاوی آهن توسط راهای نوع M2
فصلنامه علمی پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی

بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی...

شکل ۵ حلقه پسماند مغناطیسی (الف) ذرات نئودیمیم و غشاهای زمینه مخلوط پلی سولفون حاوی (ب) ۱ درصد و نئودیمیم (ج) ۵ درصد نئودیم

Figure 5 Magnetic hysteresis loops of (a) neodymium particles and PSf MMMs containing (b) 1 wt.% and (c) 5 wt.% neodymium

شکل ۶ تصاویر میکروسکوپی الکترونی پویشی از سطح مقطع عرضی غشاهای زمینه مخلوط پلی سولفون-نئودیمیم حاوی (الف و ب) ۱ درصد و نئودیمیم حاوی (ج و د) ۵ درصد نئودیمیم

Figure 6 Scanning electron microscopy images of cross sections (first column: overall and second column: higher magnification) of PSf-Nd MMMs with different loadings of Nd: (a and b) 1 wt.% , (c and d) 5 wt.%
فصلنامه علمی پژوهشی بین رشته ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر
بررسی عملکرد غشاهای زمینه مخلوط پلی سولفون-نئودیمیم حاوی (الف) 1 درصد وزنی و (ب) 5 درصد

نتیجه‌گیری‌های پایداری حرارتی نئودیمیم بیشترین پایداری حرارتی را در مقایسه با همه غشاهای ساخته شده دارد. این نتیجه می‌تواند ناشی از تشکیل زنجیرهای مغناطیسی در زمینه پلیمر باشد. چون زنجیرهای مغناطیسی بهصورت مانع حرارتی از ورود حرارت به زمینه پلیمر جلوگیری می‌کنند. [۴۷]

نتایج حاصل از افزودن ذرات نئودیمیم به زمینه پلی سولفون متقابل با ضریب نئودیمیم و آرایش ذرات نئودیمیم در حالت تراوایی و جدیده نتایج بیشتر شده است و افزایش حرارتی اکسیژن و نیتروژن با افزودن باراد و ذرات نئودیمیم به دلیل تجمع ذرات با تشکیل زنجیرهای مغناطیسی و فشار شدید در بین ذرات و پلیمر باشد. برای بررسی اثر افزودن ذرات نئودیمیم به زمینه پلی سولفون، نتیجه‌گیری‌های پایداری حرارتی به دست آمده، نتایج لازم‌تر برای بررسی اثر افزودن ذرات نئودیمیم با افزایش مقدار نئودیمیم است. افزایش حرارتی گذشته اکسیژن به دلیل تجمع ذرات با تشکیل زنجیرهای مغناطیسی و فشار شدید در بین ذرات و پلیمر باشد. برای بررسی اثر افزودن ذرات نئودیمیم با افزایش مقدار نئودیمیم، لازم است به دلیل تجمع ذرات با تشکیل زنجیرهای مغناطیسی و فشار شدید در بین ذرات و پلیمر باشد.

نمودار نتایج حرارتی غشاهای پلی سولفون و زمینه مخلوط پلی سولفون حاوی مقادیر مختلف ذرات نئودیمیم

شکل ۷ تصویر میکروسکوپی الکترونی بینی از سطح غشاهای زمینه مخلوط پلی سولفون-نئودیمیم حاوی (الف) 1 درصد وزنی و (ب) 5 درصد

شکل ۸ نمودار نتایج حرارتی غشاهای پلی سولفون و زمینه مخلوط پلی سولفون حاوی مقادیر مختلف ذرات نئودیمیم

۶۲
فصلنامه علمی پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر
بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی...

63

تراکم زنجیره‌ای پلیمری شده و ایجاد حفرات در سطح مشترک بین ذرات و پلیمر باشد. در این صورت نتایج جدول ۴ بر اساس تاثیر جدول ۴ دیده می‌شود که گزینش پذیری غشاها با افزایش ذرات نئودیمیم کاهش پیدا کرده است. این کاهش گزینش ذرات را می‌توان به تغییر حفارات غیرانتهایی جز جای ایجاد سیمپتیمی در زمینه پلیمر نسبت داد. با افزایش مقدار ذرات به های مغناطیسی در مقطع عرضی احتمال تشکیل کانال‌های مغناطیسی در مقطع گاز وجود دارد. باید به این نکته توجه شود که با توجه به خاصیت مغناطیسی غشاها (شکل ۵) اندازهٔ دکمه بین اولتراپوئری نیتروژن در غشاهای زمینه مخلوط به دلیل نیروی دافعه موجود بین کانال‌های مغناطیسی تراکم زنجیره‌ای پلیمری شده و ایجاد حفرات در سطح مشترک بین ذرات و پلیمر باشد. در این صورت نتایج جدول ۴ بر اساس تاثیر جدول ۴ دیده می‌شود که گزینش پذیری غشاها با افزایش ذرات نئودیمیم کاهش پیدا کرده است. این کاهش گزینش ذرات را می‌توان به تغییر حفارات غیرانتهایی جز جای ایجاد سیمپتیمی در زمینه پلیمر نسبت داد. با افزایش مقدار ذرات به های مغناطیسی در مقطع عرضی احتمال تشکیل کانال‌های مغناطیسی در مقطع گاز وجود دارد. باید به این نکته توجه شود که با توجه به خاصیت مغناطیسی غشاها (شکل ۵) اندازهٔ دکمه بین اولتراپوئری نیتروژن در غشاهای زمینه مخلوط به دلیل نیروی دافعه موجود بین کانال‌های مغناطیسی تراکم زنجیره‌ای پلیمری شده و ایجاد حفرات در سطح مشترک بین ذرات و پلیمر باشد. در این صورت نتایج جدول ۴ بر اساس تاثیر جدول ۴ دیده می‌شود که گزینش پذیری غشاها با افزایش ذرات نئودیمیم کاهش پیدا کرده است. این کاهش گزینش ذرات را می‌توان به تغییر حفارات غیرانتهایی جز جای ایجاد سیمپتیمی در زمینه پلیمر نسبت داد. با افزایش مقدار ذرات به های مغناطیسی در مقطع عرضی احتمال تشکیل کانال‌های مغناطیسی در مقطع گاز وجود دارد. باید به این نکته توجه شود که با توجه به خاصیت مغناطیسی غشاها (شکل ۵) اندازهٔ دکمه بین اولتراپوئری نیتروژن در غشاهای زمینه مخلوط به دلیل نیروی دافعه موجود بین کانال‌های مغناطیسی تراکم زنجیره‌ای پلیمری شده و ایجاد حفرات در سطح مشترک بین ذرات و پلیمر باشد. در این صورت نتایج جدول ۴ بر اساس تاثیر جدول ۴ دیده می‌شود که گزینش پذیری غشاها با افزایش ذرات نئودیمیم کاهش پیدا کرده است. این کاهش گزینش ذرات را می‌توان به تغییر حفارات غیرانتهایی جز جای ایجاد سیمپتیمی در زمینه پلیمر نسبت داد. با افزایش مقدار ذرات به های مغناطیسی در مقطع عرضی احتمال تشکیل کانال‌های مغناطیسی در مقطع گاز وجود دارد. باید به این نکته توجه شود که با توجه به خاصیت مغناطیسی غشاها (شکل ۵) اندازهٔ دکمه بین اولتراپوئری نیتروژن در غشاهای زمینه مخلوط به دلیل نیروی دافعه موجود بین کانال‌های مغناطیسی تراکم زنجیره‌ای پلیمری شده و ایجاد حفرات در سطح مشترک بین ذرات و پلیمر باشد. در این صورت نتایج جدول ۴ بر اساس تاثیر جدول ۴ دیده می‌شود که گزینش پذیری غشاها با افزایش ذرات نئودیمیم کاهش پیدا کرده است. این کاهش گزینش ذرات را می‌توان به تغییر حفارات غیرانتهایی جز جای ایجاد سیمپتیمی در زمینه پلیمر نسبت داد. با افزایش مقدار ذرات به های مغناطیسی در مقطع عرضی احتمال تشکیل کانال‌های مغناطیسی در مقطع گاز وجود دارد. باید به این نکте...
بحث نتایج حاکی از این است که در مورد کاهش میزان تراوایی، مغناطیسی به بار خارجی بیشتر اثر می‌کند. در همان صورت، متابولیسم غشاهای زمینه مخلوط مغناطیسی با افزایش میزان مغناطیسی می‌تواند تراوایی نیتروژن را کاهش دهد.

جدول ۶: تأثیر میزان مغناطیسی مختلف بر خواص انتقال غشاهای پلی‌مر

<table>
<thead>
<tr>
<th>Wt.% of Nd</th>
<th>Permeability (Barrer)</th>
<th>α (O₂/N₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>570</td>
<td>330</td>
</tr>
<tr>
<td>Magnetic field (mT)</td>
<td>N₂</td>
<td>O₂</td>
</tr>
<tr>
<td>0</td>
<td>0.29±0.006</td>
<td>1.6±0.017</td>
</tr>
<tr>
<td>1</td>
<td>0.42±0.015</td>
<td>2.05±0.023</td>
</tr>
<tr>
<td>5</td>
<td>1.53±0.027</td>
<td>5.77±0.045</td>
</tr>
</tbody>
</table>

شکل ۹ مقایسه عملکرد غشاهای های در این کار با خط رابسون

Figure 9 Comparison of membranes prepared in the present work with Robeson’s upper bounds [17]
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر
بررسی عملکرد غشاهای زمینه مخلوط مغناطیسی...

موجبه ویژگی علمی غشاهای پلی سولفون، شیمیاء و کاربرد مهندسی شیمی، یکی از سایر پژوهش از نظر داده‌ها و نتایج غشاء‌ها، که بیشتر پر از عملکرد غشاهای زمینه مخلوط مغناطیسی با ویژگی‌های قوی نیستند که بتواند از عبور کامل مولکول‌های نیتروژن از داخل کانال جلوگیری کند.

کاربردی با توجه به نتایج جدول دلیل قوی شدن افزایش مقادیر ذرات در زمینه پلی‌سر سولفون خاص و همچنین افزایش تعادل مغناطیسی غشاهای مخلوط در حضور میدان خاصیت مغناطیسی غشاهای کربن می‌باشد. به این ترتیب، تحقیق‌های علمی پژوهشی بین رشته‌ای در زمینه پلی‌سر سولفون و غشاهای زمینه مخلوط مغناطیسی این اثر آزمایشگری بر عملکرد غشاهای پلی سولفون با چهار یک کیلوسولفون در حضور میدان مغناطیسی 65 میلی تسلا از غشاهای حاوی 1 درصد وزنی ذرات بارند. با افزایش مقدار ذرات به 5 درصد وزنی، این مقادیر به 570 میلی تسلا رسیده است. این نتیجه را می‌توان نشان داد که کاهش کمی از مقدار میدان مغناطیسی باید باعث افزایش ذرات در زمینه پلی‌سر سولفون خاص گردد.

موارد ذرات که بر اساس نتایج جدول قوی شدن افزایش مقادیر ذرات در زمینه پلی‌سر سولفون خاص و همچنین افزایش تعادل مغناطیسی غشاهای مخلوط در حضور میدان خاصیت مغناطیسی غشاهای کربن می‌باشد. به این ترتیب، تحقیق‌های علمی پژوهشی بین رشته‌ای در زمینه پلی‌سر سولفون و غشاهای زمینه مخلوط مغناطیسی این اثر آزمایشگری بر عملکرد غشاهای پلی سولفون با چهار یک کیلوسولفون در حضور میدان مغناطیسی 65 میلی تسلا از غشاهای حاوی 1 درصد وزنی ذرات بارند. با افزایش مقدار ذرات به 5 درصد وزنی، این مقادیر به 570 میلی تسلا رسیده است. این نتیجه را می‌توان نشان داد که کاهش کمی از مقدار میدان مغناطیسی باید باعث افزایش ذرات در زمینه پلی‌سر سولفون خاص گردد.

به این ترتیب، تحقیق‌های علمی پژوهشی بین رشته‌ای در زمینه پلی‌سر سولفون و غشاهای زمینه مخلوط مغناطیسی این اثر آزمایشگری بر عملکرد غشاهای پلی سولفون با چهار یک کیلوسولفون در حضور میدان مغناطیسی 65 میلی تسلا از غشاهای حاوی 1 درصد وزنی ذرات بارند. با افزایش مقدار ذرات به 5 درصد وزنی، این مقادیر به 570 میلی تسلا رسیده است. این نتیجه را می‌توان نشان داد که کاهش کمی از مقدار میدان مغناطیسی باید باعث افزایش ذرات در زمینه پلی‌سر سولفون خاص گردد.
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر

مراجع

[28] Rybak A, Kaszuwara W, Poly(2, 6-Dimethyl-1, 4-Phenylene Oxide) Hybrid Membranes Filled with Magnetically Aligned Iron-Encapsulated Carbon Nanotubes (Fe@MWCNTs) for Enhanced Air Separation, Diamond Relat Mater, 83,21-29, 2018.