Effect of Size of Tire Parts and Mazut Addition on Simultaneous Pyrolysis of Used Tire and Mazut

Saman Alimohammadi¹, Ramin Karimzadeh ²*

¹-M.Sc. Student of Chemical Engineering, Tarbiat Modares University, P. O. Box 14115-114, Tehran, Iran
²-Faculty of Chemical Engineering, Tarbiat Modares University, P. O. Box 14115-114, Tehran, Iran

Abstract

Research subject: The use of scrap tires to recover energy and their compounds is an effective way to protect the environment and recover energy and materials.

Research approach: The aim of this research is to investigate the process of tire pyrolysis as well as the simultaneous pyrolysis (copyrolysis) process of tire and mazut. Here, the effect of different operating conditions such as temperature, volumetric nitrogen gas, heating rate and size of tire parts on the physical quantities and physical properties of the products manufactured by these processes have been investigated.

Main results: The optimal operating conditions for these experiments are 420 °C, the volumetric gas flow rate is 100 ml / min and the heating rate is 3 °C / min. The volume of the reactor is 500 ml and the amount of mazut in the copyrolysis process is 30 wt %. The highest amount of liquid produced in the process of pyrolysis was achieved using tire parts with the particle size of 0.5×2×4 cm3, which is %43.3 by weight. In contrast, the largest liquid product produced in the simultaneous pyrolysis process of the tire and mazut was obtained using tire parts with a size of 0.5×4×4 cm3, which is %52.3 by weight. In this study, the physical properties of liquid products produced by two processes of pyrolysis of tire and copyrolysis of tire and mazut, such as kinematic viscosity, density and refractive index, have been investigated.

key words

Pyrolysis of Tire
Pyrolysis of Mazut
Copyrolysis
Size of Tire Parts
Properties of Pyrolysis Products

*To whom correspondence should be addressed:
ramin@modares.ac.ir
اثر اندازه قطعات تایر و اضافه نمودن مازوت در پیرولیز همزمان
تایر مستعمل و مازوت

سامان علی محمدی، رامین کریم زاده
1- دانشجوی کارشناسی ارشد دانشگاه تربیت مدرس، دانشگاه مهندسی شیمی، تهران، ایران، صندوق پستی 14115-114
2- هیئت علمی دانشگاه مهندسی شیمی دانشگاه تربیت مدرس، تهران، ایران، صندوق پستی 14115-114

چکیده

استفاده از تایرهای فرسوده برای بازیابی انرژی و ترکیبات آنها یک راه کاربردی برای حفاظت از محیط زیست و افزایش موارد و انرژی است. در این تحقیق، هدف بررسی فرآیند پیرولیز تایر و همچنین فرآیند پیرولیز همزمان تایر و مازوت است. در این تحقیق، شرایط عملیاتی مختلف مانند دما، دبی حجمی گاز نیترورن، نرخ حرارت دهی و اندام قطعات تایر بر پایه و خواص فیزیکی محصولات تولیدی این فرآیندها مورد بررسی قرار گرفته است. شرایط عملیاتی به‌ینه برای انجام این آزمایش‌ها به ترتیب شامل دمای 420 درجه سانتی‌گراد، دیسی حجمی گاز نیترورن برای 100 ml/min، دبی حرارت دهی 3 درجه سانتی‌گراد و دهی 3 درجه سانتی‌گراد است. بهترین محصول مایع تولیدی در فرآیند پیرولیز تایر و مازوت نمایش دهنده میزان سطح پایداری بر اساس شرایط عملیاتی مطابق با تحقیق در حالت تیز دستگاه مایع تولیدی از قطعات تایر و مازوت برای تولید محصولات پیرولیز و ضرایب شکست و جرم مولکولی و ترکیب مورد بررسی قرار گرفته است.

کلمات کلیدی
پیرولیز تایر
پیرولیز مازوت
پیرولیز همزمان
اندازه قطعات تایر
特性

ramin@modares.ac.ir
مقدمه:
تأثیرهای فرسوده به عنوان یک مشکل جدی در آندوکی، در صنعت پلاستیک، تولید مصرف‌های محیط‌آور است. جهت کاهش اثرات آن، تحقیقات بسیاری انجام شده است. در این مقاله، تأثیر اندازه قطعات تایر و اضافه نمودن مازوت در تولید محصولات فراوری شده برای افزایش میزان نیافته‌های محیطی بررسی گردید. ...

...

یکی از این روش‌ها تولید CSBR در دمای 35 درجه سانتی‌گراد در راکتورهای BFBR است. همچنین میزان تولید کربن سیاه از /BFBR/ 8 کوئیسی و همکارانش از چوئی و همکارانش (PCT) SEUZ نشسته شده است که در فرآیندهای امواجی دارای جذابیت بیشتری است. همچنین بازیافت مواد جامد و مایع، نسبت به سایر تایر فرسوده با دلیل اصلی پیشنهاد شده است که به یکی از مهم‌ترین جامدات مصرف‌کننده که در فرآیند استفاده می‌شود. از این قبیل می‌شود که این مواد به صورت سالانه در رشته‌های مختلف صنعتی و سایر قطعات تایر پلاستیکی استفاده می‌شود. در برخی مطالعات مشابه در فرآیند تولید می‌شود که سالانه ۱۰ میلیارد حلقه لاستیک تولید می‌شود که سالانه ۱۰ میلیار드 حلقه لاستیک تولید می‌شود که سالانه ۱۰ میلیارد حلقه لاستیک تولید می‌شود که سالانه ۱۰ میلیاردر
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر
اثر اندازه قطعات تایر و اضافه نمودن مازوت در...

2 مواد و روش آزمایشگاهی
برای انجام این آزمایش‌ها از تایرهای سواری نمایان باز استفاده شده است. درصد وزنی ترکیبات تشکیل-دهنده تایر سواری در جدول 1 نشان داده شده است. برای این آزمایش‌ها از قطعات تایر با اندازه‌های مختلف استفاده شده که مشخصات آنها در جدول 2 می‌باشد.

جدول 1. وزنی ترکیبات تشکیل‌دهنده تایر [19]
<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>PASSENGER CAR TIRE (wt. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural rubber</td>
<td>14</td>
</tr>
<tr>
<td>Synthetic rubber</td>
<td>27</td>
</tr>
<tr>
<td>Carbon black</td>
<td>28</td>
</tr>
<tr>
<td>Steel</td>
<td>14-15</td>
</tr>
<tr>
<td>Fabric, fillers, accelerators,</td>
<td>16-17</td>
</tr>
<tr>
<td>antiozonants, etc.</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. مشخصات قطعات تایر با اندازه‌های مختلف
<table>
<thead>
<tr>
<th>Size of parts (cm³)</th>
<th>Side area of each tire (cm²)</th>
<th>Weight of each piece of tire (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 × 4 × 0.5</td>
<td>40</td>
<td>10.3</td>
</tr>
<tr>
<td>4 × 2 × 0.5</td>
<td>22</td>
<td>5.8</td>
</tr>
<tr>
<td>2 × 2 × 0.5</td>
<td>12</td>
<td>3.5</td>
</tr>
<tr>
<td>4 × 2 × 1</td>
<td>28</td>
<td>8.7</td>
</tr>
<tr>
<td>Tire powder</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول 3. مشخصات قطعات تایر با اندازه‌های مختلف
<table>
<thead>
<tr>
<th>Specifications</th>
<th>Results</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative viscosity at 80 °C (cSt)</td>
<td>13.5</td>
<td>ASTM D45</td>
</tr>
<tr>
<td>Kinematic viscosity at 80 °C (cSt)</td>
<td>101</td>
<td>ASTM D445</td>
</tr>
<tr>
<td>Relative viscosity at 100 °C (cSt)</td>
<td>6.2</td>
<td>ASTM D445</td>
</tr>
<tr>
<td>Ash content (wt. %)</td>
<td>0.06</td>
<td>ASTM D482</td>
</tr>
<tr>
<td>Density at °20°C (kg/m³)</td>
<td>939.1</td>
<td>GOST 3900</td>
</tr>
</tbody>
</table>

فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر
خواص و ویژگی های آن در جدول ۳ نشان داده شده است.

برای انجام آزمایش‌های پیروپلیز از ۱۰۰ گرم تایر و ۳۰ گرم مازوت استفاده شده است. برای انجام آزمایش‌های کوپیروپلیز از گرم تایر و ۷۰ گرم مازوت استفاده شده است.

۳ تاثیر و بحث
۳.۱ برای انجام آزمایش‌های پیروپلیز و کوپیروپلیز، قطعات تایر به اندازه ۴۰۰-۲۰۰ نمونه در محدوده دما ۹۰۰-۲۴۵۰ درجه سانتی‌گراد، به‌طور متوسط به دمای نیتروژن دسته‌بندی شد. در هر این آزمایش ۵۰۰ ml نیتروژن در بزرگه ۱۱×۱۰×۱۰ cm³ از سیستم آزمایش استفاده شد. برای انجام این آزمایش‌ها، ضریب نیز با مدل ATAGO انلایس استفاده گردید.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است. برای انجام آزمایش‌های پیروپلیز و کوپیروپلیز، به‌طور کلی در هر آزمایش ۵۰۰ ml نیتروژن در بزرگه ۱۱×۱۰×۱۰ cm³ به‌طور متوسط به دمای نیتروژن دسته‌بندی شد. در هر این آزمایش ۵۰۰ ml نیتروژن در بزرگه ۱۱×۱۰×۱۰ cm³ از سیستم آزمایش استفاده شد. برای انجام این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه داده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه D204 استفاده شده است. برای انجام آزمایش‌های آلیکس استفاده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه D204 استفاده شده است. برای انجام آزمایش‌های آلیکس استفاده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه D204 استفاده شده است. برای انجام آزمایش‌های آلیکس استفاده شده است.

برای انجام آزمایش‌های آلیکس استفاده شده است. در این آزمایش‌ها، ضریب NAR1 مدل GLASSCO ساخت کنون و کلی فرآیند پیروپلیز در یک نمونه D204 استفاده شده است. برای انجام آزمایش‌های آلیکس استفاده شده است.
بر دقیقه برای افزایش میزان گاز نیتروژن و تغییر مقادیر ممکن آن انتخاب شده‌است. بیشترین میزان محصول مایع تولیدی در دمای 100 میلی\(^\circ\)C صورت گرفت.

شکل 2. وزن‌برداری درصد و نسبت محصولات جامد و مایع تیر در دماهای مختلف

Figure 2. Weight percentage of solid and liquid tire pyrolysis products at different temperatures

شکل 3. وزن‌برداری درصد و نسبت محصولات تیر در دماهای مختلف گاز نیتروژن

Figure 3. Weight percentage of tire pyrolysis products in different volumes of nitrogen gas
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر
اثر اندازه قطعات تایر و اضافه نمودن مازوت در فرآیند پیرولیز (تراکم ذوبی و غیرقابل تراکم) فرآیند تبادل حرارت بیشتری با محیط داخل راکتور خواهد داشت و در نتیجه میزان حرارت در میان آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود.در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه میزان حرارت دریافته آنها افزایش می یابد که باعث افزایش واکنش های کرکینگ حرارتی و ککینگ می شود که به ترتیب کاهش از این فرآیندها سبب افزایش میزان مولکول‌های بیشتری از این فرآیندها و بسیاری از محصولات غیرقابل تراکم (غیرقابل تراکم) بیشتر تولید می شود. در این مدل رفع حرارت از محیط داکل خواهد رخ داد و در نتیجه محصولات غیرقابل تراکم در نقطه حرارتی مختلف در دمای 420 °C شکل 4. وزن‌صدای محصولات پیرولیز تایر در تغییر حرارتی نهایی مختلف در دمای 420 °C

![شکل 4. وزن‌صدای محصولات پیرولیز تایر در تغییر حرارتی نهایی مختلف در دمای 420 °C](https://i.imgur.com/420C.png)
فصلنامه علمی پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر
اثر اندازه قطعات تایر و اضافه نمودن مازوت

<table>
<thead>
<tr>
<th>Size of tire parts (cm³)</th>
<th>Liquid weight percent in pyrolysis</th>
<th>Liquid percentage in copyrolysis</th>
<th>Percentage of liquid added without Mazut effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>440.5</td>
<td>39</td>
<td>52.3</td>
<td>5.4</td>
</tr>
<tr>
<td>420.5</td>
<td>43.3</td>
<td>50.6</td>
<td>0.7</td>
</tr>
<tr>
<td>220.5</td>
<td>35.1</td>
<td>50.2</td>
<td>6.1</td>
</tr>
<tr>
<td>421</td>
<td>30.2</td>
<td>48.9</td>
<td>8</td>
</tr>
<tr>
<td>Tire powder and mazut</td>
<td>30.3</td>
<td>42.8</td>
<td>2</td>
</tr>
<tr>
<td>Mazut</td>
<td>65.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 4: افزایش تولید مایع فرآیند کپیپیروزی بدون در نظر گرفتن اثر مازوت

Increase in the liquid production of the copyrolysis process regardless of the effect of the mazut.

Figure 5. Physical properties of pyrolysis tire liquid products at different temperatures

شکل 5: افزایش مایعات مایع پیرولیز تایر در دمای مختلف

فصلنامه علمی پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی – پلیمر

Downloaded from arcpe.modares.ac.ir at 17:37 IRDT on Thursday April 29th 2021
به دو اندازه قطعات تایر و اضافه نمودن مازوت در میزان

در مجموعه مقاله مورد بررسی قرار گرفته است.

اثر اندازه قطعات تایر و اضافه نمودن مازوت در

فعالیتی می‌شود. دلایل بالا برای تعییم داد.

میزان و تغییرات گراوی، محصولات مایع در شکل فرایندهای پیرولیز تایر و کوپیرولیز تایر و مازوت ارائه شده و مورد مقایسه قرار گرفته است.

همانطور که مشاهده می‌شود با تغییر در اندازه‌های قطعات تایر و اضافه نمودن مازوت در محصولات مایع حاصل از پیرولیز مقدار نسبتی افزایش می‌یابد.

به‌همین دلیل ورود محصول مایع پیرولیز مایع در فرایند کوپیرولیز، مقدار چگالی محصولات مایع پیرولیز با کاهش چشمه‌گیری رویب‌آوری می‌شود. این موضوع می‌تواند به دلیل و رشد محصول مایع پیرولیز مذکور به داخل محصول پیرولیز تایر باشد با افزودن مازوت به تایر و پیرولیز آنها در دمای ۴۲۰ درجه سانتی‌گراد علانه بر محصول مایع تولیدی نوسیب تایر محصول مایع حاصل از پیرولیز گرمایی مازوت به مایع تولیدی کوپیرولیز افزوده می‌شود که این محصول دارای چگالی پایینی است و در نتیجه چگالی محصولات پایینی کاهش می‌یابد. در نمودار ۸ نیز میزان جرم موکولی جرم موکولی در اجزای محصولات مایع قرار داده شده است. تغییرات در مقادیر جرم موکولی میزان حاصله را می‌توان با دلالی ذکر شده در قسمت قبل برای چگالی توجه نمود.

نتیجه گیری

پیرولیز تایر یکی از بهترین روش‌های برای تولید مایع‌ها و مواد تولیدی فرسوده است. با اضافه نمودن مازوت به علت اندازه قطعات تایر مایع تولید حصول مایع را فراهم می‌کند. هدف از این پژوهش بررسی اثر

شکل ۶: مقایسه میزان قطعات مایع پیرولیز (سمت چپ) و کوپیرولیز تایر و مازوت (سمت راست) در اندازه‌های مختلف قطعات تایر در دمای ۴۲۰°C

Figure 6. Comparison of the viscosity of pyrolysis liquid products (left) and tire and mazut copyrolysis (right) at different tire size sizes at 420 °C.
اثر اندازه قطعات تایر و اضافه نمودن مازوت در...

و همچنین افزایش کسر گاز تولیدی شود. برای رسیدن به درصد تبدیل بالاتر و به حداکثر استفاده از قطعات تایر، مورد نیاز و افزایش محصولات اصلی پیروپلیز، پیروپلیز با اندازه قطعات کوچکتر تریجی داده می‌شود. با این حال، باعث شده بیش از میزان حرارت و زمان اقیانوس کم‌فراموشی، اندازه دراز کرده که باعث افزایش شدید و همچنین افزایش میزان حرارت جذب شده و نتیجه این ایجاد واکنش ثانویه بوده است.

افزایش دمای بهینه برای انجام فرآیندهای پیروپلیز و کوپیروپلیز نیاز به برای 240 درجه سانتی‌گراد است. همچنین بهبود گاز نیتروژن برنابایی 100 میلی لیتر بر دقیقه بدست آمده است. نرخ حرارت دری تناوب نیز برابر 30 درجه بسته به اندازه قطعات تایر بیشتر قرار پیدا می‌کند. با این حال، در نتیجه اینکه حرارت و زمان اقیانوس کم‌فراموشی، اندازه دراز کرده که باعث افزایش شدید و همچنین افزایش میزان حرارت جذب شده و نتیجه این ایجاد واکنش ثانویه بوده است.

امده، با کاهش دی‌های حجمی گاز نیتروژن میزان تولید محصول ماپ و میزان تولید محصولات جامد و گاز افزایش می‌پایند. با کاهش نرخ حرارت دری میزان تولید محصول ماپ افزایش می‌پایند. افزایش نرخ حرارت دری می‌تواند باعث افزایش واکنش‌های تولید شود. با این حال، در نتیجه اینکه حرارت و زمان اقیانوس کم‌فراموشی، اندازه دراز کرده که باعث افزایش شدید و همچنین افزایش میزان حرارت جذب شده و نتیجه این ایجاد واکنش ثانویه بوده است.

شکل 7 مقایسه جرم مولکولی محصولات پیروپلیز (سمت چپ) و کوپیروپلیز تایر و مازوت (سمت راست) در اندازه‌های مختلف قطعات تایر در دمای 420 °C.

شکل 8 مقایسه جرم مولکولی محصولات پیروپلیز (سمت چپ) و کوپیروپلیز تایر و مازوت (سمت راست) در اندازه‌های مختلف قطعات تایر در دمای 420 °C.

فصل نهایی علمی: پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر.
اثر اندازه قطعات تایر و اضافه نمودن مازوت در...
مراجع