The experimental study of the effect of polyacrylamide nanocomposite on reservoir rock and fluid properties in presence of formation water

Asghar Gandomkar*, 1Neda Javanmard, Fatemeh Nayeri, Hadi Adloo, Mehdi Sharif

Department of Chemical and Petroleum Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

Abstract

Research subject: Water flooding is one of the most common improved oil recovery methods in the world. High residual oil saturation at the end of this method is due to low macroscopic sweep efficiency and viscous fingering phenomena. It can be improved by change the mobility control during polymer solution injection.

Research approach: In this study, by synthesis of silica/polyacrylamide nanocomposite, the effect of it on mobility ratio, interfacial tension, viscosity of chemical solutions, and reservoir rock wettability was investigated. Moreover, the performance of polymer solution in high salinity water was studied by using nano particles. In addition, the characterization of the synthesized nanocomposite was performed by FTIR, SEM, and TGA tests. Also, in this study, the interfacial tension between reservoir oil and chemical solutions, contact angel in order to measure the reservoir rock wettability, zeta potential, and viscosity of chemical solutions were performed to investigate the impact of injected water on rock and fluid properties. The concentration of nanocomposite solutions were considered 2000, 1000, and 5000 ppm during the experimental measurements.

Main results: The zeta potential results show that the stability of polymer solution was enhanced in presence of nano particles in high salinity water condition. Also, the lowest interfacial tension was obtained for polyacrylamide nanocomposite contained 1 percent nano silica (18.34 mN.m), and the most tendency to water wet conditions was provided for this concentration. In addition to, 1 percent nano silica/polyacrylamide nanocomposite has the best performance on formation water viscosity and improved the mobility ratio to 1.07, which it can increase the oil recovery.

key words
Polyacrylamide nanocomposite
Mobility control
IFT
Limestone rock wettability
Zeta potential

*To whom correspondence should be addressed:
*agandomkar@shirazu.ac.ir
مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی آکریل آمید بر روی خواص سنگ و سیال مخزن در حضور آب سازندی

چکیده

یکی از روش‌های مرسوم ازدیاد برداشت در مخازن نفتی جهان، روش تزریق نفت به صورت کنترل شده است. این روش با افزایش ابعاد شرایط شوری سیال مخزن و زاویه تماس، بهبود ویسکوزیته محلول‌های شیمیایی و ترشوندگی سنگ مخزن آهنگ مورد بررسی قرار گرفت. همچنین، در این مطالعه نتایج آزمایشگاهی سنگ مخزن نفت مخزن و محلول‌های شیمیایی به منظور تعیین ترشوندگی سنگ مخزن، توانایی زاپاس و سیال‌وری برروی سنسیمین‌ها به دو کسری پذیری تا نانوذره سیلیس و پتاسیل مورد بررسی قرار گرفت. محلول نانوکامپوزیت با غلظت های 5، 500، 2000، 3000 و 5000 ppm به منظور انتخاب نسبت به ترکیب انگشتی نانوکامپوزیت در نظر گرفته شده است. نتایج آزمون زناشنایی مخصوص نانوذره سیلیس نشان داد که افزایش غلظت محلول نانوکامپوزیت به مدت 10 دقیقه برای سیال‌یابی بهبود گرفت. انتخاب غلظت 5000 ppm محلول نانوکامپوزیت با غلظت عادی یعنی بهبود نسبت تحرک پذیری شود (M=1/07) و تولید نفت را افزایش دهد.

کلمات کلیدی

ناموکامپوزیت پلی آکریل آمید
کنترل تحرک پذیری
کشش بین سطحی
ترشوندگی سنگ مخزن آهنگ
پتاسیل زناشنایی

پژوهش‌های کاربردی
مهندسی شیمی - پلیمر
فصلنامه علمی- پژوهشی بین رشته‌ای
نشریه جامعه مهندسی شیمی و نفت
نشریه جامعه مهندسی پلیمر
1398، شماره 29-41، صفحه 1398

عکس‌نامه علمی - پژوهشی بین رشته‌ای

پژوهش‌ها مربوط به این مطالعه برای اثبات مشخصات در بخش تشریح نتایج آزمایشگاهی بررسی می‌شود.

agandomkar@shirazu.ac.ir
فصلنامه‌ی علمی پژوهشی بین‌رشته‌ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر

فرآیند ازدیاد برداشت می‌تواند به‌عکس به روش‌های مورد استفاده برای افزایش برداشت نشان دهد. در این مجموعه، نشریه‌ی Thermal (Recovery Chemical)، تری‌سیستم‌های (Injection) و روش‌های تولید است. (1) به‌صورتی از روش‌های ازدیاد برداشت استفاده می‌شود. این مطالعه‌ی آزمایشگاهی تأثیر نانوکامپوزیت پلی‌اکریل آمید را بر این زمینه‌ها مورد بررسی قرار داد.

در این پژوهش خواص مکانیکی، الکتریکی و حرارتی این انواع ازدیاد برداشت نشان داد که مشخص نیست در کدام ابعاد نانوکامپوزیت می‌تواند به‌ویژه در محیط‌های یون پرد اختند. هید روژل نانوکامپوزیت‌های با مقاومت دیجیتال و سایر مشخصات مورد بررسی قرار گرفت. در این برنامه، مطالعه‌ی کنترل تجزیه، در واقع همان تری‌سیستم حجم عظیمی از اتصال عرضی با دی‌کریستال و مولکولی زند و با غلظت کافی برای افزایش ارزنقی فاز آب این نتایج نشان داد که گران‌روی ظاهری کافی بود. نانوکامپوزیت‌های بر پایه پلی‌اکریل آمید و مشتقات آن ازدیاد برداشت را بهبود با پلی‌اکریل افزایش گرفتند.

نتایج نشان داد که گران‌روی ظاهری کافی بود. نانوکامپوزیت‌های بر پایه پلی‌اکریل آمید و مشتقات آن ازدیاد برداشت را بهبود با پلی‌اکریل افزایش گرفتند.

نتایج نشان داد که گران‌روی ظاهری کافی بود. نانوکامپوزیت‌های بر پایه پلی‌اکریل آمید و مشتقات آن ازدیاد برداشت را بهبود با پلی‌اکریل افزایش گرفتند.
نام کپوزیت ها به همراه ابعاد های کاربردی بالقوه
آنها بررسی شده است. [19]. تحلیلی و همکاری
تحقیقات خود را در راستای فراورش اپاکسی و از دست‌دهی
مواد شیمیایی در شرایط مختلف نفتی در قالب
سه‌سرگزشت‌کننده تحقیق پذیرکننده که کمک بین
سازی کم مخزن-لکه‌فکه‌ای و تغییر ترشوئندی
سطح سک سیروی حضور نانوذرات نهچال سیرویکا،
دی اکسید کیپسولوم، اکسیدروی و گرافن انجام داده‌اند
[20]. بهرامیان و موسوی-مقدم به بررسی اثرات نانوذرات
نخورش مونت‌رولیست بر رژیم مصرفی مورد استفاده
در عملیات استادی آب در مخازن نفتی پرداختند. حضور
هیدروکربنی با تابع جدول 2 مطابقت دارد.

جدول 1 ترکیب آب ساژن

<table>
<thead>
<tr>
<th>درصد مولی</th>
<th>بکرینه</th>
<th>کلیم</th>
<th>کلیم</th>
<th>متزیم</th>
<th>محلول</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>220025</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2 ترکیب نفت مخزن

<table>
<thead>
<tr>
<th>درصد مولی</th>
<th>هیدروکربن</th>
<th>تتر (دم)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.773</td>
<td>29.722</td>
</tr>
</tbody>
</table>

پیلیم شدن مونومر اکریل آمید در مجاورت از آغاز گر
رادیکال‌های نیتراته می‌تواند بررسی شود در محیط آبی به روش
به روش (لبیمیرایسیون) رادیکال‌های آزاد انجمام می‌شود.
برای نمونه نفت مورد استفاده از شرکت آورژن شده است و نشان
دهنده نفت مورد استفاده از آزمایشات ترکیب‌های نفتی ول.
جدول ناحیه نفتی را می‌شود. سپس تأثیر نانو کپوزیت ساخته شده بر روی
خرشه سنگی-سیال سیرویکا، کشیده بین طولی
و ترشوئندی (بررسی می‌شود. علاوه براین عملکرد
محلول‌های مصرفی در شرایط دست الی با استفاده از آزمون
یافته‌سیل را مورد بررسی قرار خواهد گرفت.

۲ موارد، تجهیزات و روش کار:

مواد:
مومور اکریل آمید از شرکت مترکس با وزن مولکولی
۴۱۷ gr/mol با نسبت پرسولون‌ها و رزمیکش ۱:۷ نمونه‌برداری کننده
و وزن مولکولی ۱۰۵۰ gr/mol انجام شد. نمونه‌برداری ۲۰ نمونه در
۲۵۰/۱۶ درجه سانتی‌گراد در دمای ۲۰ °C طول و حده
۲ ساعت در هنگام شرایط ایامی می‌باید. در پایان زمان
واکنش، نانوذرات نپتروپیت حاصل به روش رسوب می‌گردد.

فهرست مالی بر یونه اینه راه یاه کاربردی مدیسیش مبهم - پیامر
فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر

مقاله ازمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید

مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید

فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر

شما و به مد تری‌ال‌پلی‌ن، خشک می‌شود.

اجام‌داده‌ها: نانودوزی اکریل یک‌تایی زنا پلاستیک زناد مدل تکان‌گیر به منظور بررسی میزان پایداری محلول‌یاً تپه‌ری به یک می‌رود، شکل ۳ [۲۹].

۱ بحث و نتیجه‌گیری

پس از تکنولوژی پلی‌زرمی، به منظور بررسی ساختار شیمیایی و توزیع نانوذرات در ماتریس پلی‌زرمی و تأثیر آن بر خواص از اکریل‌های صورت‌زی، تجربیات، طول عمر و سیستم‌های نمونه‌های ساخته شده در محدوده دما، دمای ۲۵ تا ۷۰ درجه سانتی‌گراد و تحت تنش نیتروژن، انجام گیرد [۲۹].

در پاسخ به سنتز نانوکامپوزیت پلی‌زرمی، به منظور اس‌تی‌آر پلی‌زرمی اس‌تی‌آر (TGA) آزمایش گرماوزن-سنجی (SEM) و آزمایش‌های فیزیکی-میکرو‌اسکوپی الکترونی (FTIR) ایجاد شد. نتایج به دست آمده در شکل‌های ۱ تا ۴ (شکل ۳) مشخص شده است.

همان‌گونه که در شکل ۴ نشان داده شده است، در ناحیه آماده نانوذرات در محدوده دما به موجی ۳۳۴۰/۱۴۰۰ سنتی‌متر مربوط به حرکات لرزشی گروه‌های سطحی N–H است. است. در ناحیه اکریل آمید نانوذرات به موجی C=C در این دیده می‌شود. در ناحیه ۱۷۲۴/۱۴۰۱ سنتی‌متر مربوط به حرکات لرزشی گروه‌های سطحی N–H است. در ناحیه ۱۴۵۰/۱۴۰۱ سانتی‌متر مربوط به حرکات لرزشی گروه‌های سطحی N–H است.
نمودن نه یا بیشتر است. همچنین نتایج آزمون SEM ضمن تأیید وجود عنصر سیلیسیم، پراکندگی این عنصر را در ساختار نانوکامپوزیت نشان می‌دهد. علاوه بر این می‌توان در این شکل مشاهده کرد که نانوکامپوزیت پلیمری با درصد نانویی 1 درایه پراکنش مناسب تری است (شکل 4).

به منظور تعیین بهترین غلظت محلول نانوکامپوزیت پلیمری در آب سازنده ابتدا از محلول پلی اکریل آمید ppm، 2000 ppm، 3000 ppm، 4000 ppm و همچنین نفت خام و آب سازنده، آزمون گرانروی و امیدبرایسون پلی اکریل آمید و نانوکامپوزیت پلیمری، در شکل (7) نشان داده شد. با محاسبه Mobility (فیزیک) پذیری آب به نفت با توجه به فرمول و نتایج حاصل از آزمون گرانروی مشخص می‌شود که محلول پلی اکریل آمید با غلظت های ppm و 3000 ppm می‌تواند با محاسبه غلظت با کمک Formula 2 سه بسته محلول با غلظت های ppm و 2000 و 1500 و 2000 میلی‌گرم بر لیتر را بهتر از لحاظ کنترل تحرک پذیری دارد. بنابراین در ادامه از پلیمر با غلظت های 1000 و 2000 همراه با نانوذره سیلیکا استفاده می‌شود.

شکل 2: طرح وارد دستگاه کشش بین سطحی به روش قطره آویزان

Fig. 2. IFT measurement setup by pendant drop method

شکل 3: نمودن نه یا بیشتر است. همچنین نتایج آزمون SEM ضمن تأیید وجود عنصر سیلیسیم، پراکندگی این عنصر را در ساختار نانوکامپوزیت نشان می‌دهد. علاوه بر این می‌توان در این شکل مشاهده کرد که نانوکامپوزیت پلیمری با درصد نانویی 1 درایه پراکنش مناسب تری است (شکل 4).

به منظور تعیین بهترین غلظت محلول نانوکامپوزیت پلیمری در آب سازنده ابتدا از محلول پلی اکریل آمید ppm، 2000 ppm، 3000 ppm، 4000 ppm و همچنین نفت خام و آب سازنده، آزمون گرانروی و امیدبرایسون پلی اکریل آمید و نانوکامپوزیت پلیمری، در شکل (7) نشان داده شد. با محاسبه Mobility (فیزیک) پذیری آب به نفت با توجه به فرمول و نتایج حاصل از آزمون گرانروی مشخص می‌شود که محلول پلی اکریل آمید با غلظت های ppm و 3000 ppm می‌توانند با محاسبه غلظت با کمک Formula 2 سه بسته محلول با غلظت های ppm و 2000 و 1500 و 2000 میلی‌گرم بر لیتر را بهتر از لحاظ کنترل تحرک پذیری دارد. بنابراین در ادامه از پلیمر با غلظت های 1000 و 2000 همراه با نانوذره سیلیکا استفاده می‌شود.
مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید

شکل 4 نتایج آزمون FTIR از پلی اکریل آمید و نانوکامپوزیت

Fig.4. FTIR tests from polyacrylamide and nanocomposite

شکل 5 نمودار TGA نانوکامپوزیت پلی اکریل آمید با درصد های مختلف نانوسیلیکا

Fig.5. TGA tests from nanocomposite with different nanosilica concentrations
فصلنامه علمی پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر

مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید بر روی نسبت تحاکم محلول پلیمری و نفت مخزن

مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید بر روی نسبت تحاکم محلول پلیمری و نفت مخزن مورد ارزیابی قرار گرفت. های ترین روش از آنجایی که مواد شیمیایی جزء گرانشی بوده و بنابراین ایجاد می‌کنند، بنابراین استفاده از موانع شیمیایی جدید اقتصادی مقرر به صورت بهینه است. در اکثر مطالعات صورت گرفته، غلظت بهینه مواد شیمیایی در حین سیلاب زنی در حدود کمتر از 5000 ppm گزارش شده است. استفاده از پلیمر غلظت بهینه سهیلیا به بالای سیلاب موجب جذب بیش از حد مواد شیمیایی بر روی سیلای مخزن شود که باعث کاهش تراوی و ایجاد آسیب سازند خواهد شد. جذب مواد شیمیایی باعث تغییر در عملکرد فرآیند تزریق خواهد شد و در نتیجه موجب کاهش تولید نفت می‌شود (آفر 10/). در مجموع، آزمون گرفته شده که نتایج حاصل در شکل‌های زیر نشان می‌دهد:

اگر M<1 باشد باید موانعی که نفت با سرعتی بزرگتر از اب حکم می‌کند که در این حالت آب به عنوان عامل جایگزین شود. اگر M>1 باشد این نمونه نفت با شرایط گوشی که از اب حکم می‌کند و در این صورت با

 nuevas.png

Fig.6. Viscosity of water, oil, and nanocomposite solution with different concentrations

Fig.6. SEM tests for nanocomposites (left to right respectively: nanocomposite solution with 0.2 percent nanosilica, nanocomposite solution with 0.5 percent nanosilica, and nanocomposite solution with 1 percent nanosilica)
برای محلول‌های نانوکامپوزیت پلیمری با غلظت 2000 ppm مقدار M محاسبه شده بر اساس است:\n
\[M = \frac{0.9}{0.5} \text{ برای محلول با درصد نانو} \]
\[\text{M} = \frac{2}{94} \text{ برای محلول با درصد نانو} \]
\[\text{M} = \frac{2}{95} \text{ برای محلول با درصد نانو} \]

برای محلول‌هایی نانوکامپوزیت M باتوجه به مقادیر

\[\text{M} = \frac{1}{10} \text{ برای محلول با درصد نانو} \]

شکل‌گیری بهترین تحرك بذیری نسبت به شیمیایی و نفت مخفی در محلول‌های نانوکامپوزیت پلیمری در شکل (3) نشان داده شده است. به همین ترتیب، تصاویر قطعه نفت در محلول‌های نانوکامپوزیت پلیمری در شکل (10) نشان می‌دهد که محلول نانوکامپوزیت از نتیجه داشته باشد.

شکل 8 نمودار نبودن غلظت محلول‌های نانوکامپوزیت پلیمری با درصد‌های مختلف نانوژره در غلظت 1000 ppm آب سازند.

Fig. 8. Viscosity results for nanocomposite solutions with different nanosilica concentrations and 1000 ppm water salinity

شکل 9 نمودار نبودن غلظت محلول‌های نانوکامپوزیت پلیمری با درصد‌های مختلف نانوژره در غلظت 2000 ppm آب سازند.

Fig. 9. Viscosity results for nanocomposite solutions with different nanosilica concentrations and 2000 ppm water salinity

کننده سیلیک بار نانوسیلیکا بر روی دیدگاه محلول شیمیایی و نفت مخفی مورد ارزیابی قرار گرفت.

\[\text{M} = \frac{2}{0.5} \text{ برای محلول با دیدگاه نانوکامپوزیت پلیمری با غلظت 2000 ppm} \]

\[\text{M} = \frac{1}{0} \text{ برای محلول با دیدگاه نانوکامپوزیت پلیمری با غلظت 1000 ppm} \]
با هدف آب دوستی شدن قرار می‌گیرد. این آزمایش در ۳ نوبت با فواصل زمانی مختلف انجام می‌شود. به همین منظور آزمایش اول بیش از ۱ ساعت، آزمایش دوم پس از ۳ روز و آزمایش سوم بیش از ۷ روز قرار گرفتن سنگ درون محلول انجام می‌شود. در این آزمایش مخزن نفت دوست درون محلول پلی‌اکریل‌آمید نانوکامپوزیت پلیمری تصور می‌شود. علاوه بر سرعت محلول پلیمری و نفت، از طرفی فاکتور pH نیز از این واردگرهای مختلف نانوسیلیکا به مخزن تنظیم می‌شود. با توجه به اینکه افزایش pH می‌تواند سنگ خامه را سخت کند، از قرار گرفتن سنگ درون محلول تیتر تغییر pH می‌باشد. این معامله که به‌صورت می‌باشد. این معامله می‌تواند به‌صورت می‌باشد. این معال
مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریلیک

Fig. 11. Reservoir rock wettability alteration in presence of solutions after 1 hr (right to left respectively: polymer solution, nanocomposite with 0.2 percent nanosilica, nanocomposite with 0.5 percent nanosilica, and nanocomposite with 1 percent nanosilica)

Fig. 12. Reservoir rock wettability alteration in presence of solutions after 2 days (right to left respectively: polymer solution, nanocomposite with 0.2 percent nanosilica, nanocomposite with 0.5 percent nanosilica, and nanocomposite with 1 percent nanosilica)

Fig. 13. Reservoir rock wettability alteration in presence of solutions after 7 days (right to left respectively: polymer solution, nanocomposite with 0.2 percent nanosilica, nanocomposite with 0.5 percent nanosilica, and nanocomposite with 1 percent nanosilica)
فصلنامه علمی پژوهشی بین رشته‌ای پژوهش‌های کاربردی مهندسی شیمی - پلیمر

مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید

نتایج

1. نانوکامپوزیت پلی اکریل آمید با درصد نانوذره ۱۰۰‌پپم، مناسب ترین پراکنش نانوذره در محققیات نانوکامپوزیت

2. در آزمون IFT، نانوکامپوزیت پلی اکریل آمید با درصد نانوذره ۱۰۰‌پپم، کمترین کشش بین سطحی را دارد.

3. نانوکامپوزیت پلی اکریل آمید با درصد نانوذره ۱۰۰‌پپم، کمترین مقادیر از تغییرات ترشودگی دارد.

4. بهترین نانوکامپوزیت پلی اکریل آمید با درصد نانوذره ۱۰۰‌پپم در فرآیند ازدحام بهترین سیلیکای شیمی - پلیمری است.

جدول ۴ نتایج حاصل از آزمایش پتانسیل زتا با مخلوط‌های نانوکامپوزیت پلیمری با درصد‌های مختلف نانوذره

<table>
<thead>
<tr>
<th>توده سیال</th>
<th>میزان پتانسیل زتا بر حسب میلی ولت (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>پلیمر خالص (نانو ۰%)</td>
<td>+۹.۵</td>
</tr>
<tr>
<td>نانوکامپوزیت پلیمری (نانو ۰.۲%)</td>
<td>+۲.۲</td>
</tr>
<tr>
<td>نانوکامپوزیت پلیمری (نانو ۰.۵%)</td>
<td>+۳.۴</td>
</tr>
<tr>
<td>نانوکامپوزیت پلیمری (نانو ۱%)</td>
<td>+۲.۵</td>
</tr>
</tbody>
</table>

نتایج حاصل از آزمایش پتانسیل زتا بر حسب میلی ولت (mV) (پلاکت سیال)
مطالعه از آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید

فصلنامه علمی پژوهشی بین رشته ای پژوهش های کاربردی مهندسی شیمی - پلیمر

مطالعه آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید

مراجع

1- خلیلی نژاد، سید شهراز; ایمیدو، میلا; مجدی، ایمان; مطالعه شیمی سازی روغن‌های سلزاسی پلی اکریل، اکتشاف و توسعه نفت و گاز، ۱۳۹۳، ۱۷(۱)، ص ۴۹-۵۸.

2- علیزاده، بیژن; مهدی‌نژاد، مینو; تکنولوژی‌های نوین در ازدیاد برداشت نفت، اولین همایش ملی تکنولوژی‌های نوین در شیمی و پتروشیمی، تهران، (۱۳۹۳).

4- Chen Z, Schuman TP, and Bai B., Polyacrylamide and its Derivatives for Oil Recovery, Doctoral Dissertations, Missouri University of Science and Technology, 2016.

5- شرکت ایم نفت، اولین همایش ملی تکنولوژی‌های نوین در ازدیاد برداشت نفت، ماهنامه فناوری نانو، ۱۳۹۴، ۱۳(۸)، ص ۱۸-۲۲.

مقاله آزمایشگاهی تأثیر نانوکامپوزیت پلی اکریل آمید...

۲۵- خضرایی، محمود؛ پرهیزکار، نفیسه؛ شهرابی، تقی، میکروسکوپ الکترونی روبشی عموری و کاربرد آن در فناوری نانو و علم مواد، فناوری نانو، ۱۱، (۱۳۹۴).